
System Composer™
Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Reference
© COPYRIGHT 2019–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)
March 2022 Online only Revised for Version 2.2 (Release 2022a)
September 2022 Online only Revised for Version 2.3 (Release 2022b)
March 2023 Online only Revised for Version 2.4 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

Objects
2

Classes
3

Functions
4

Methods
5

Tools and Apps
6

iii

Contents

Blocks

1

Adapter
Connect components with different interfaces

Description
The Adapter block allows you to connect the source and destination ports of components that have
different interface definitions.

To add or connect System Composer components:

• Add an Adapter block from the Modeling tab or the palette. The Adapter block has In and Out
ports.

• Click and drag a port to create a connection. Connect each port to another component. You can
also create a new component to complete the connection.

• Insert an Adapter block between two ports with different interfaces. You can create mappings
between interface elements on each port.

To map between interfaces, apply interface conversions, and enter bus creation mode for architecture
models:

• Double-click the Adapter block to open the “Interface Adapter” dialog. From here, you can create
and edit mappings between input and output interfaces, and set the Apply Interface conversion
parameter to: UnitDelay to break an algebraic loop or RateTransition to reconcile different
sample time rates for reference models. When output interfaces are undefined, you can use input
interfaces in bus creation mode to author owned output interfaces as you work.

To merge multiple message lines for architecture models and multiple signal or message lines for
software architecture models:

• Manually configure the Adapter block by double-clicking the block to open the “Interface
Adapter”. Set the Apply Interface conversion parameter to Merge.

• For software architecture models, from the toolstrip, add a Merge block, which is a preconfigured
Adapter block for merging.

Limitations
• When used for structural interface adaptations, the Adapter block uses bus element ports

internally and, subsequently, only supports virtual buses.
• The Adapter block does not support mixing messages and signals as inputs and outputs.

1 Blocks

1-2

Ports
Input

Source — Input connection from a component
interface

If you connect to a source component, the interfaces on the ports should be compatible.

Output

Destination — Output connection to a component
interface

If you connect to a destination component, the interfaces on the ports should be compatible.

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

 Adapter

1-3

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

1 Blocks

1-4

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
Functions
connect

Blocks
Component | Reference Component | Variant Component

Topics
“Define Port Interfaces Between Components”

 Adapter

1-5

Component
Add components to architecture model

Description
Use a Component block to represent a structural or behavioral element at any level of an architecture
model hierarchy. Add ports to the block to connect to other components. Define an interface for the
ports and add properties using stereotypes.

To add or connect System Composer components:

• Add an architecture Component block from the Modeling tab or the palette. You can also click
and drag a box on the canvas, then select the Component block.

• To add a port, select an edge of the component and choose a direction from the menu: Input,
Output, or Physical

• Click and drag the port to create a connection. Connect to another component. You can also create
a new component to complete the connection.

• To connect Component blocks to architecture or composition model root ports, drag from the
component ports to the containing model boundary. When you release the connection, a root port
is created at the boundary.

• To add component-level parameters, use the Parameter Editor tool.

Ports
Input

Source — Input connection from another component
interface

If you connect to a source component, the interfaces on the ports are shared.

Output

Destination — Output connection to another component
interface

If you connect to a destination component, the interfaces on the ports are shared.

Physical

Physical — Physical connection to another component
physical interface

1 Blocks

1-6

If you connect to another component, the physical interfaces on the ports are shared.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 Component

1-7

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink® subsystem with
Simscape™ connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

1 Blocks

1-8

Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
Functions
addComponent | addPort | connect

Blocks
Reference Component | Variant Component | Adapter

Topics
“Compose Architectures Visually”

 Component

1-9

Reference Component
Link to architectural definition or Simulink behavior

Description
Use a Reference Component block to link an architectural definition of a System Composer
component or a Simulink behavior.

To add or connect System Composer components:

• Add an architecture Reference Component block from the Modeling tab or the palette. You can
also click and drag a box on the canvas, then select the Reference Component block.

• Attach a referenced model to the component by selecting <Enter Model Name>.
• Click and drag any port to create a connection. Connect to another component. You can also

create a new component to complete the connection.
• To connect Reference Component blocks to architecture or composition model root ports, drag

from the component ports to the containing model boundary. When you release the connection, a
root port is created at the boundary.

To manage Reference Component block contents:

• When you create a Reference Component block, you have the option to right-click the component
and select Block Parameters. From here, you can specify your reference model name, if it
already exists. The reference model can be a System Composer architecture model or a Simulink
model.

• With a regular Component block, you can right-click on the block and convert it to a reference
component.

• Select Save As Architecture to save the contents of the component as an architecture
model or subsystem that can be referenced in multiple places and kept in sync. The component
will become a reference component that links to the referenced architecture model or
subsystem.

Note To type ports on architecture subsystems with interfaces, you must link an external
interface data dictionary. Architecture subsystems do not contain a model workspace. For more
information, see “Manage Interfaces with Data Dictionaries”.

• Select Create Simulink Behavior to create a new Simulink reference model or subsystem
and link to it.

• Select Link to Model to link to a known model or subsystem that can be either a System
Composer architecture model or a Simulink model.

1 Blocks

1-10

• To break the reference link for a Reference Component block, you have the option to right-click
and select Inline Model, which removes the contents of the architecture model referenced by
the specified component and breaks the link to the reference model. The Reference Component
block becomes a regular Component block.

Note Components with physical ports cannot be saved as architecture models, model references,
software architectures, or Stateflow® chart behaviors. Components with physical ports can only be
saved as subsystem references or subsystem component behaviors.

Ports
Input

Source — Input connection from another component
interface

If you connect to a source component, the interfaces on the ports are shared.

Output

Destination — Output connection to another component
interface

If you connect to a destination component, the interfaces on the ports are shared.

Physical

Physical — Physical connection to another component
physical interface

If you connect to another component, the physical interfaces on the ports are shared.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 Reference Component

1-11

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

1 Blocks

1-12

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

 Reference Component

1-13

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

1 Blocks

1-14

Version History
Introduced in R2019a

See Also
Functions
addComponent | addPort | connect | inlineComponent | createSimulinkBehavior |
createArchitectureModel | createStateflowChartBehavior |
extractArchitectureFromSimulink | linkToModel | isReference

Blocks
Component | Variant Component | Adapter

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

 Reference Component

1-15

Variant Component
Add components with alternative designs

Description
Use a Variant Component block to create multiple design alternatives for a component.

To add or connect System Composer components:

• Add an architecture Variant Component block from the Modeling tab or the palette. You can also
click and drag a box on the canvas, then select the Variant Component block. You can also create a
variant component from a component or reference component. Right-click on the component and
select Add Variant Choice.

• To add a port, select an edge of the component and choose a direction from the menu: Input or
Output

• Click and drag the port to create a connection. Connect to another component. You can also create
a new component to complete the connection.

• To connect Variant Component blocks to architecture or composition model root ports, drag from
the component ports to the containing model boundary. When you release the connection, a root
port is created at the boundary.

To manage Variant Component choices:

• By default, two variant choices are created when you create a Variant Component block. Right-
click the Variant Component block and select Variant > Label Mode Active Choice, then select
the active choice.

• To add an additional variant choice, right-click on the Variant Component block and select Variant
> Add Variant Choice.

• Double-click into the Variant Component block to design the variants within it.
• Use the Variant Manager to easily switch between variant choices in a complex model hierarchy.

Right-click on the Variant Component block and select Variant > Open in Variant Manager. For
more information, see “Variant Manager for Simulink”.

Ports
Input

Source — Input connection from another component
interface

1 Blocks

1-16

If you connect to a source component, the interfaces on the ports are shared.

Output

Destination — Output connection to another component
interface

If you connect to a destination component, the interfaces on the ports are shared.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 Variant Component

1-17

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

1 Blocks

1-18

See Also
Functions
addVariantComponent | addChoice | getActiveChoice | getChoices | getCondition |
setActiveChoice | setCondition | addPort | makeVariant | connect

Blocks
Component | Reference Component | Adapter

Topics
“Decompose and Reuse Components”

 Variant Component

1-19

Objects

2

systemcomposer.allocation.Allocation
Allocation between source element and target element

Description
An Allocation object defines the allocation between the source element and the target element.

Related objects include:

• systemcomposer.allocation.AllocationScenario
• systemcomposer.allocation.AllocationSet

Creation
Create two allocations between four elements in the default scenario, Scenario 1, using the
allocate function.

defaultScenario = allocSet.getScenario("Scenario 1");
defaultScenario.allocate(sourceElement1,sourceElement2);
defaultScenario.allocate(sourceElement3,sourceElement4);

Properties
Source — Source element
element object

Source element, specified as a systemcomposer.arch.Element object.

Target — Target element
element object

Target element, specified as a systemcomposer.arch.Element object.

Scenario — Allocation scenario
allocation scenario object

Allocation scenario, specified as a systemcomposer.allocation.AllocationScenario object.

UUID — Universal unique identifier
character vector

Universal unique identifier for allocation, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

2 Objects

2-2

Object Functions
destroy Remove model element

Examples

Allocate Architectures in Tire Pressure Monitoring System

Use allocations to analyze a tire pressure monitoring system.

Overview

In systems engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions [1].

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation
[2].

3 Platform Architecture — Describes the physical hardware needed for the system at a high level
[3].

Note: This example illustrates allocations in System Composer™ using a specific methodology.
However, you can use other methodologies that fit your needs.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information about each architectural layer and makes it accessible to the
others.

Use this command to open the project.

 scExampleTirePressureMonitorSystem

 systemcomposer.allocation.Allocation

2-3

Open the FunctionalAllocation.mldatx file, which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture in the Allocation Editor. The
elements of TPMS_FunctionalArchitecture are displayed in the first column. The elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

The arrows display allocated components in the model. You can observe allocations for each element
in the model hierarchy.

The rest of the example shows how to use this allocation information to further analyze the model.

2 Objects

2-4

Functional to Logical Allocation and Coverage Analysis

This section shows how to perform coverage analysis to verify that all functions have been allocated.
This process requires using the allocation information specified between the functional and logical
architectures.

To start the analysis, load the allocation set.

 allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

 import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

All functions are allocated

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This section shows how to identify which functions will be provided by which suppliers using the
specified allocations. Since suppliers will be delivering these components to the system integrator,
the supplier information is stored in the logical model.

 suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
 functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
 numFunNames = length(allFunctions);
 numSuppliers = length(suppliers);
 allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
 allocTable.Properties.VariableNames = suppliers;
 allocTable.Properties.RowNames = functionNames;
 for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

 end

The table shows which suppliers are responsible for the corresponding functions.

 allocTable

 systemcomposer.allocation.Allocation

2-5

allocTable=8×4 table
 Supplier A Supplier B Supplier C Supplier D
 __________ __________ __________ __________

 Measure temprature of tire 0 0 0 1
 Measure pressure on tire 0 0 1 0
 Calculate Tire Pressure 0 1 0 0
 Report Tire Pressure Levels 1 0 0 0
 Measure rotations 0 1 0 0
 Measure Tire Pressure 0 0 0 0
 Report Low Tire Pressure 1 0 0 0
 Calculate if pressure is low 1 0 0 0

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

 platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

 softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

 frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');
 rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

 scenario1 = softwareDeployment.getScenario('Scenario 1');
 scenario2 = softwareDeployment.getScenario('Scenario 2');
 frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
 rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

 frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
 frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
 rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
 rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

 frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
 frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
 rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
 rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

 softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

softwareDeploymentTable=6×2 table
 Scenario 1 Scenario 2

2 Objects

2-6

 __________ __________

 Front ECUMemory Used (MB) 110 90
 Front ECU Memory (MB) 100 100
 Front ECU Overloaded 1 0
 Rear ECU Memory Used (MB) 0 20
 Rear ECU Memory (MB) 100 100
 Rear ECU Overloaded 0 0

 function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

For each component in the ECU, accumulate the binary size required for each allocated software
component.

 coreNames = {'Core1','Core2','Core3','Core4'};
 memoryUsed = 0;
 for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
 end

 end

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

 systemcomposer.allocation.Allocation

2-7

Version History
Introduced in R2020b

See Also
getAllocatedFrom | getAllocation | getAllocatedTo | allocate | getScenario

Topics
“Create and Manage Allocations Programmatically”

2 Objects

2-8

systemcomposer.allocation.AllocationScenario
Allocation scenario

Description
An AllocationScenario object defines a collection of allocations between elements in the source
model to elements in the target model.

Creation
Create an allocation set with name myNewAllocation using the
systemcomposer.allocation.createAllocationSet function.

systemcomposer.allocation.createAllocationSet("myNewAllocation", ...
 "Source_Model_Allocation","Target_Model_Allocation");

Create a second allocation scenario Scenario 2 in addition to the default scenario Scenario 1
using the createScenario function.
scenario = createScenario(myAllocationSet,"Scenario 2")

Properties
Name — Name of allocation scenario
character vector

Name of allocation scenario, specified as a character vector.
Example: 'Scenario 1'
Data Types: char

Allocations — Allocations in scenario
array of allocation objects

Allocations in scenario, specified as an array of systemcomposer.allocation.Allocation
objects.

AllocationSet — Allocation set to which scenario belongs
allocation set object

Allocation set to which scenario belongs, specified as an
systemcomposer.allocation.AllocationSet object.

Description — Description of allocation scenario
character vector

Description of allocation scenario, specified as a character vector.
Data Types: char

 systemcomposer.allocation.AllocationScenario

2-9

UUID — Universal unique identifier
character vector

Universal unique identifier for allocation scenario, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

Object Functions
allocate Create new allocation
deallocate Delete allocation
getAllocation Get allocation between source and target elements
getAllocatedFrom Get allocation source
getAllocatedTo Get allocation target
destroy Remove model element

Examples

Allocate Architectures in Tire Pressure Monitoring System

Use allocations to analyze a tire pressure monitoring system.

Overview

In systems engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions [1].

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation
[2].

3 Platform Architecture — Describes the physical hardware needed for the system at a high level
[3].

Note: This example illustrates allocations in System Composer™ using a specific methodology.
However, you can use other methodologies that fit your needs.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information about each architectural layer and makes it accessible to the
others.

Use this command to open the project.

 scExampleTirePressureMonitorSystem

2 Objects

2-10

Open the FunctionalAllocation.mldatx file, which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture in the Allocation Editor. The
elements of TPMS_FunctionalArchitecture are displayed in the first column. The elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

The arrows display allocated components in the model. You can observe allocations for each element
in the model hierarchy.

The rest of the example shows how to use this allocation information to further analyze the model.

 systemcomposer.allocation.AllocationScenario

2-11

Functional to Logical Allocation and Coverage Analysis

This section shows how to perform coverage analysis to verify that all functions have been allocated.
This process requires using the allocation information specified between the functional and logical
architectures.

To start the analysis, load the allocation set.

 allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

 import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

All functions are allocated

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This section shows how to identify which functions will be provided by which suppliers using the
specified allocations. Since suppliers will be delivering these components to the system integrator,
the supplier information is stored in the logical model.

 suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
 functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
 numFunNames = length(allFunctions);
 numSuppliers = length(suppliers);
 allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
 allocTable.Properties.VariableNames = suppliers;
 allocTable.Properties.RowNames = functionNames;
 for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

 end

The table shows which suppliers are responsible for the corresponding functions.

 allocTable

2 Objects

2-12

allocTable=8×4 table
 Supplier A Supplier B Supplier C Supplier D
 __________ __________ __________ __________

 Measure temprature of tire 0 0 0 1
 Measure pressure on tire 0 0 1 0
 Calculate Tire Pressure 0 1 0 0
 Report Tire Pressure Levels 1 0 0 0
 Measure rotations 0 1 0 0
 Measure Tire Pressure 0 0 0 0
 Report Low Tire Pressure 1 0 0 0
 Calculate if pressure is low 1 0 0 0

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

 platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

 softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

 frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');
 rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

 scenario1 = softwareDeployment.getScenario('Scenario 1');
 scenario2 = softwareDeployment.getScenario('Scenario 2');
 frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
 rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

 frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
 frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
 rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
 rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

 frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
 frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
 rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
 rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

 softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

softwareDeploymentTable=6×2 table
 Scenario 1 Scenario 2

 systemcomposer.allocation.AllocationScenario

2-13

 __________ __________

 Front ECUMemory Used (MB) 110 90
 Front ECU Memory (MB) 100 100
 Front ECU Overloaded 1 0
 Rear ECU Memory Used (MB) 0 20
 Rear ECU Memory (MB) 100 100
 Rear ECU Overloaded 0 0

 function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

For each component in the ECU, accumulate the binary size required for each allocated software
component.

 coreNames = {'Core1','Core2','Core3','Core4'};
 memoryUsed = 0;
 for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
 end

 end

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

2 Objects

2-14

Version History
Introduced in R2020b

See Also
createScenario

Topics
“Create and Manage Allocations Programmatically”

 systemcomposer.allocation.AllocationScenario

2-15

systemcomposer.allocation.AllocationSet
Set of allocation scenarios

Description
An AllocationSet object defines a collection of allocation scenarios between two System Composer
models.

Creation
Create an allocation set with name myNewAllocation using the
systemcomposer.allocation.createAllocationSet function.

systemcomposer.allocation.createAllocationSet("myNewAllocation", ...
 "Source_Model_Allocation","Target_Model_Allocation");

Properties
Name — Name of allocation set
character vector

Name of allocation set, specified as a character vector.
Example: 'MyNewAllocation'
Data Types: char

SourceModel — Source model for allocation
model object

Source model for allocation, specified as a systemcomposer.arch.Model object.

TargetModel — Target model for allocation
model object

Target model for allocation, specified as a systemcomposer.arch.Model object.

Scenarios — Allocation scenarios
array of allocation scenario objects

Allocation scenarios, specified as an array of
systemcomposer.allocation.AllocationScenario objects.

Description — Description of allocation set
character vector

Description of allocation set, specified as a character vector.
Data Types: char

2 Objects

2-16

NeedsRefresh — Whether allocation set is out of date
true or 1 | false or 0

Whether allocation set is out of date with the source model, target model, or both, specified as a
logical.
Data Types: logical

Dirty — Whether allocation has unsaved changes
true or 1 | false or 0

Whether allocation set has unsaved changes, specified as a logical.
Data Types: logical

UUID — Universal unique identifier
character vector

Universal unique identifier for allocation set, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

Object Functions
createScenario Create new empty allocation scenario
getScenario Get allocation scenario
deleteScenario Delete allocation scenario
synchronizeChanges Synchronize changes of models in allocation set
find Find loaded allocation set
save Save allocation set as file
close Close allocation set
closeAll Close all open allocation sets

Examples

Allocate Architectures in Tire Pressure Monitoring System

Use allocations to analyze a tire pressure monitoring system.

Overview

In systems engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions [1].

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation
[2].

 systemcomposer.allocation.AllocationSet

2-17

3 Platform Architecture — Describes the physical hardware needed for the system at a high level
[3].

Note: This example illustrates allocations in System Composer™ using a specific methodology.
However, you can use other methodologies that fit your needs.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information about each architectural layer and makes it accessible to the
others.

Use this command to open the project.

 scExampleTirePressureMonitorSystem

Open the FunctionalAllocation.mldatx file, which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture in the Allocation Editor. The
elements of TPMS_FunctionalArchitecture are displayed in the first column. The elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

2 Objects

2-18

The arrows display allocated components in the model. You can observe allocations for each element
in the model hierarchy.

The rest of the example shows how to use this allocation information to further analyze the model.

Functional to Logical Allocation and Coverage Analysis

This section shows how to perform coverage analysis to verify that all functions have been allocated.
This process requires using the allocation information specified between the functional and logical
architectures.

To start the analysis, load the allocation set.

 allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

 import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

All functions are allocated

 systemcomposer.allocation.AllocationSet

2-19

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This section shows how to identify which functions will be provided by which suppliers using the
specified allocations. Since suppliers will be delivering these components to the system integrator,
the supplier information is stored in the logical model.

 suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
 functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
 numFunNames = length(allFunctions);
 numSuppliers = length(suppliers);
 allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
 allocTable.Properties.VariableNames = suppliers;
 allocTable.Properties.RowNames = functionNames;
 for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

 end

The table shows which suppliers are responsible for the corresponding functions.

 allocTable

allocTable=8×4 table
 Supplier A Supplier B Supplier C Supplier D
 __________ __________ __________ __________

 Measure temprature of tire 0 0 0 1
 Measure pressure on tire 0 0 1 0
 Calculate Tire Pressure 0 1 0 0
 Report Tire Pressure Levels 1 0 0 0
 Measure rotations 0 1 0 0
 Measure Tire Pressure 0 0 0 0
 Report Low Tire Pressure 1 0 0 0
 Calculate if pressure is low 1 0 0 0

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

 platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

 softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

 frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');

2 Objects

2-20

 rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

 scenario1 = softwareDeployment.getScenario('Scenario 1');
 scenario2 = softwareDeployment.getScenario('Scenario 2');
 frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
 rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

 frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
 frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
 rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
 rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

 frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
 frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
 rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
 rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

 softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

softwareDeploymentTable=6×2 table
 Scenario 1 Scenario 2
 __________ __________

 Front ECUMemory Used (MB) 110 90
 Front ECU Memory (MB) 100 100
 Front ECU Overloaded 1 0
 Rear ECU Memory Used (MB) 0 20
 Rear ECU Memory (MB) 100 100
 Rear ECU Overloaded 0 0

 function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

For each component in the ECU, accumulate the binary size required for each allocated software
component.

 coreNames = {'Core1','Core2','Core3','Core4'};
 memoryUsed = 0;
 for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
 end

 systemcomposer.allocation.AllocationSet

2-21

 end

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
systemcomposer.allocation.Allocation |
systemcomposer.allocation.AllocationScenario | editor | createAllocationSet

Topics
“Create and Manage Allocations Programmatically”

2 Objects

2-22

systemcomposer.analysis.ArchitectureInstance
Architecture in analysis instance

Description
An ArchitectureInstance object represents an instance of an architecture.

Creation
Create an instance of an architecture using the instantiate function.
instance = instantiate(model.Architecture,'LatencyProfile','NewInstance', ...
'Function',@calculateLatency,'Arguments','3','Strict',true, ...
'NormalizeUnits',false,'Direction','PreOrder')

Properties
Name — Name of instance
character vector

Name of instance, specified as a character vector.
Example: 'NewInstance'
Data Types: char

Components — Child components of instance
array of component instance objects

Child components of instance, specified as an array of
systemcomposer.analysis.ComponentInstance objects.

Ports — Ports of architecture instance
array of port instance objects

Ports of architecture instance, specified as an array of systemcomposer.analysis.PortInstance
objects.

Connectors — Connectors in architecture instance
array of connector instance objects

Connectors in architecture instance, specified as an array of
systemcomposer.analysis.ConnectorInstance objects, connecting child components.

Specification — Reference to architecture in design model
architecture object

Reference to architecture in design model, specified as a systemcomposer.arch.Architecture
object.

 systemcomposer.analysis.ArchitectureInstance

2-23

NormalizeUnits — Whether units normalize
true or 1 | false or 0

Whether units normalize the value of properties in the instantiation, specified as a logical.
Data Types: logical

IsStrict — Whether instances get properties
true or 1 | false or 0

Whether instances get properties if the specification of the instance has the stereotype applied,
specified as a logical.
Data Types: logical

AnalysisFunction — Analysis function
MATLAB® function handle

Analysis function, specified as the MATLAB function handle to be executed when analysis is run.
Example: @calculateLatency

AnalysisDirection — Analysis direction
enumeration | character vector

Analysis direction, specified as one of the following enumerations:

• systemcomposer.IteratorDirection.TopDown
• systemcomposer.IteratorDirection.BottomUp
• systemcomposer.IteratorDirection.PreOrder
• systemcomposer.IteratorDirection.PostOrder

or a character vector of one of the following options: 'TopDown', 'PreOrder', 'PostOrder', or
'BottomUp'

Data Types: enum | char

AnalysisArguments — Analysis arguments
character vector

Analysis arguments, specified as a character vector of optional arguments to the analysis function.
Example: '3'
Data Types: char

ImmediateUpdate — Whether analysis instance updates automatically
true or 1 | false or 0

Whether analysis viewer updates automatically when the design model changes, specified as a
logical.
Data Types: logical

Object Functions
getValue Get value of property from element instance

2 Objects

2-24

setValue Set value of property for element instance
hasValue Find if element instance has property value
iterate Iterate over model elements
lookup Search for architectural element
save Save architecture instance
update Update architecture model
refresh Refresh architecture instance
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

Examples

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

 systemcomposer.analysis.ArchitectureInstance

2-25

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0
 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

2 Objects

2-26

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

defaultQueueDepth = 4.2900

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.

 systemcomposer.analysis.ArchitectureInstance

2-27

Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667
 totalKeyOffLoad: 158.7080
 batteryCCA: 500
 batteryCapacity: 850
 puekertcoefficient: 1.2000

2 Objects

2-28

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 systemcomposer.analysis.ArchitectureInstance

2-29

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

2 Objects

2-30

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
deleteInstance | instantiate | loadInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

 systemcomposer.analysis.ArchitectureInstance

2-31

systemcomposer.analysis.ComponentInstance
Component in analysis instance

Description
A ComponentInstance object represents an instance of a component.

Creation
Create an instance of an architecture using the instantiate function.
instance = instantiate(model.Architecture,'LatencyProfile','NewInstance', ...
'Function',@calculateLatency,'Arguments','3','Strict',true, ...
'NormalizeUnits',false,'Direction','PreOrder')

Properties
Name — Name of instance
character vector

Name of instance, specified as a character vector.
Example: 'NewInstance'
Data Types: char

Components — Child components of instance
array of component instance objects

Child components of instance, specified as an array of
systemcomposer.analysis.ComponentInstance objects.

Ports — Ports of component instance
array of port instance objects

Ports of component instance, specified as an array of systemcomposer.analysis.PortInstance
objects.

Connectors — Connectors in component instance
array of connector instance objects

Connectors in component instance that connect child components, specified as an array of
systemcomposer.analysis.ConnectorInstance objects.

Parent — Parent of component
architecture instance object

Parent of component, specified as a systemcomposer.analysis.ArchitectureInstance object.

Specification — Reference to component in design model
component object

2 Objects

2-32

Reference to component in design model, specified as a systemcomposer.arch.Component object.

Object Functions
getValue Get value of property from element instance
setValue Set value of property for element instance
hasValue Find if element instance has property value
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

Examples

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

 systemcomposer.analysis.ComponentInstance

2-33

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0
 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

2 Objects

2-34

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

defaultQueueDepth = 4.2900

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.

 systemcomposer.analysis.ComponentInstance

2-35

Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667
 totalKeyOffLoad: 158.7080
 batteryCCA: 500
 batteryCapacity: 850
 puekertcoefficient: 1.2000

2 Objects

2-36

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 systemcomposer.analysis.ComponentInstance

2-37

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

2 Objects

2-38

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
deleteInstance | update | refresh | save | instantiate | loadInstance | iterate |
systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

 systemcomposer.analysis.ComponentInstance

2-39

systemcomposer.analysis.ConnectorInstance
Connector in analysis instance

Description
A ConnectorInstance object represents an instance of a connector.

Creation
Create an instance of an architecture using the instantiate function.
instance = instantiate(model.Architecture,'LatencyProfile','NewInstance', ...
'Function',@calculateLatency,'Arguments','3','Strict',true, ...
'NormalizeUnits',false,'Direction','PreOrder')

Properties
Name — Name of instance
character vector

Name of instance, specified as a character vector.
Example: 'NewInterface'
Data Types: char

Parent — Component that contains connector
component instance object

Component that contains connector, specified as a
systemcomposer.analysis.ComponentInstance object.

Ports — Ports of connector instance
array of port instance objects

Ports of connector instance, specified as an array of systemcomposer.analysis.PortInstance
objects.

SourcePort — Source port instance
port instance object

Source port instance, specified as a systemcomposer.analysis.PortInstance object.

DestinationPort — Destination port instance
port instance object

Destination port instance, specified as a systemcomposer.analysis.PortInstance object.

Specification — Reference to connector in design model
connector object | physical connector object

2 Objects

2-40

Reference to connector in design model, specified as a systemcomposer.arch.Connector or
systemcomposer.arch.PhysicalConnector object.

QualifiedName — Qualified name of connector
character vector

Qualified name of connector, specified as a character vector of the form
'<PathToSourceComponent>:<PortDirection>-
><PathToDestinationComponent>:<PortDirection>'.
Example: 'model2:In->model2/Component:In'
Data Types: char

Object Functions
getValue Get value of property from element instance
setValue Set value of property for element instance
hasValue Find if element instance has property value
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

Examples

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

 systemcomposer.analysis.ConnectorInstance

2-41

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0

2 Objects

2-42

 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

defaultQueueDepth = 4.2900

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

 systemcomposer.analysis.ConnectorInstance

2-43

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667
 totalKeyOffLoad: 158.7080
 batteryCCA: 500
 batteryCapacity: 850
 puekertcoefficient: 1.2000

2 Objects

2-44

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 systemcomposer.analysis.ConnectorInstance

2-45

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

2 Objects

2-46

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
deleteInstance | update | refresh | save | instantiate | loadInstance | iterate |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

 systemcomposer.analysis.ConnectorInstance

2-47

systemcomposer.analysis.Instance
Element in analysis instance

Description
An Instance object represents an instance of a System Composer model element.

Related objects include:

• systemcomposer.analysis.ArchitectureInstance
• systemcomposer.analysis.ComponentInstance
• systemcomposer.analysis.PortInstance
• systemcomposer.analysis.ConnectorInstance

Creation
Create an instance of an architecture using the instantiate function.
instance = instantiate(model.Architecture,'LatencyProfile','NewInstance', ...
'Function',@calculateLatency,'Arguments','3','Strict',true, ...
'NormalizeUnits',false,'Direction','PreOrder')

Properties
Name — Name of instance
character vector

Name of instance, specified as a character vector.
Example: 'NewInstance'
Data Types: char

Object Functions
getValue Get value of property from element instance
setValue Set value of property for element instance
hasValue Find if element instance has property value
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

Examples

2 Objects

2-48

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

 systemcomposer.analysis.Instance

2-49

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0
 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

defaultQueueDepth = 4.2900

2 Objects

2-50

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667
 totalKeyOffLoad: 158.7080
 batteryCCA: 500

 systemcomposer.analysis.Instance

2-51

 batteryCapacity: 850
 puekertcoefficient: 1.2000

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

2 Objects

2-52

Term Definition Application More Information
analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 systemcomposer.analysis.Instance

2-53

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
deleteInstance | instantiate | loadInstance | save | update | refresh | iterate |
systemcomposer.analysis.ArchitectureInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.PortInstance |
systemcomposer.analysis.ConnectorInstance

Topics
“Write Analysis Function”

2 Objects

2-54

systemcomposer.analysis.PortInstance
Port in analysis instance

Description
A PortInstance object represents an instance of a port.

Creation
Create an instance of an architecture using the instantiate function.
instance = instantiate(model.Architecture,'LatencyProfile','NewInstance', ...
'Function',@calculateLatency,'Arguments','3','Strict',true, ...
'NormalizeUnits',false,'Direction','PreOrder')

Properties
Name — Name of instance
character vector

Name of instance, specified as a character vector.
Example: 'NewInstance'
Data Types: char

Parent — Component that contains port
component instance object

Component that contains port, specified as a systemcomposer.analysis.ComponentInstance
object.

Specification — Reference to port in design model
base port object

Reference to port in design model, specified as a systemcomposer.arch.BasePort object.

QualifiedName — Qualified name of port
character vector

Qualified name of port, specified as a character vector of the form
'<PathToComponent>:<PortDirection>'.
Example: 'model/Component:In'
Data Types: char

Incoming — Incoming connection
connector instance object

Incoming connection, specified as a systemcomposer.analysis.ConnectorInstance object.

 systemcomposer.analysis.PortInstance

2-55

Outgoing — Outgoing connection
connector instance object

Outgoing connection, specified as a systemcomposer.analysis.ConnectorInstance object.

Object Functions
getValue Get value of property from element instance
setValue Set value of property for element instance
hasValue Find if element instance has property value
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

Examples

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

2 Objects

2-56

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0
 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

 systemcomposer.analysis.PortInstance

2-57

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

defaultQueueDepth = 4.2900

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

2 Objects

2-58

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667
 totalKeyOffLoad: 158.7080
 batteryCCA: 500
 batteryCapacity: 850
 puekertcoefficient: 1.2000

 systemcomposer.analysis.PortInstance

2-59

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

2 Objects

2-60

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.analysis.PortInstance

2-61

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
deleteInstance | update | refresh | save | instantiate | loadInstance | iterate |
systemcomposer.analysis.ConnectorInstance |
systemcomposer.analysis.ComponentInstance |
systemcomposer.analysis.ArchitectureInstance | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

2 Objects

2-62

systemcomposer.arch.Architecture
Architecture in model

Description
The Architecture object represents the architecture in a System Composer model. This class is
derived from systemcomposer.arch.Element.

Creation
Create a model using the systemcomposer.createModel function and get the root architecture
using the Architecture property on the systemcomposer.arch.Model object.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture')

Properties
Name — Name of architecture
character vector

Name of architecture, specified as a character vector. The architecture name is derived from the
parent component or model name to which the architecture belongs.
Example: 'archModel'
Data Types: char

Definition — Definition type of architecture
ArchitectureDefinition enumeration

Definition type of architecture, specified as composition, behavior, or view.
Data Types: enum

Parent — Parent component
component object

Parent component that owns architecture, specified as a systemcomposer.arch.Component
object.

Components — Child components
array of component objects

Child components of architecture, specified as an array of systemcomposer.arch.Component
objects.

Ports — Architecture ports
array of architecture port objects

 systemcomposer.arch.Architecture

2-63

Architecture ports, specified as an array of systemcomposer.arch.ArchitecturePort objects.

Connectors — Connectors that connect child components of architecture
array of connector objects

Connectors that connect child components of architecture, specified as an array of
systemcomposer.arch.Connector or systemcomposer.arch.PhysicalConnector objects.

Parameters — Parameters of component
array of parameter objects

Parameters of component, specified as an array of systemcomposer.arch.Parameter objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for architecture, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the architecture and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of architecture, specified as a systemcomposer.arch.Model
object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox™ programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

2 Objects

2-64

Object Functions
addComponent Add components to architecture
addVariantComponent Add variant components to architecture
addPort Add ports to architecture
addFunction Add functions to architecture of software component
addParameter Add parameter to architecture
getParameter Get parameter from architecture or component
connect Create architecture model connections
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
batchApplyStereotype Apply stereotype to all elements in architecture
iterate Iterate over model elements
instantiate Create analysis instance from specification
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
removeProfile Remove profile from model
applyProfile Apply profile to model
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getEvaluatedParameterValue Get evaluated value of parameter from element
getParameterNames Get parameter names on element
getParameterValue Get value of parameter
setParameterValue Set value of parameter
setUnit Set units on parameter value
resetParameterToDefault Reset parameter on component to default value

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the

 systemcomposer.arch.Architecture

2-65

value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

2 Objects

2-66

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.arch.Architecture

2-67

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

2 Objects

2-68

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.arch.Architecture

2-69

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-70

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.arch.Architecture

2-71

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

2 Objects

2-72

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 systemcomposer.arch.Architecture

2-73

Version History
Introduced in R2019a

See Also
systemcomposer.arch.Component | systemcomposer.arch.Element | Component

Topics
“Create Architecture Model”

2 Objects

2-74

systemcomposer.arch.ArchitecturePort
Architecture port

Description
An ArchitecturePort object represents the input, output, and physical ports of a System
Composer architecture. This class inherits from systemcomposer.arch.BasePort. This class is
derived from systemcomposer.arch.Element.

Creation
Create an architecture port using the addPort function.

port = addPort(architecture,'in')

Properties
Name — Name of port
character vector

Name of port, specified as a character vector.
Example: 'newPort'
Data Types: char

Direction — Port direction
'Input' | 'Output' | 'Physical' | 'Client' | 'Server'

Port direction, specified as a character vector.
Data Types: char

InterfaceName — Name of interface associated with port
character vector

Name of interface associated with port, specified as a character vector.
Data Types: char

Interface — Interface associated with port
data interface object | value type object | physical interface object | service interface object

Interface associated with port, specified as a systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

Connectors — Port connectors
array of connector objects

 systemcomposer.arch.ArchitecturePort

2-75

Port connectors, specified as an array of systemcomposer.arch.Connector or
systemcomposer.arch.PhysicalConnector objects.

Connected — Whether port has connections
true or 1 | false or 0

Whether port has connections, specified as a logical.
Data Types: logical

Parent — Architecture that owns port
architecture object

Architecture that owns port, specified as a systemcomposer.arch.Architecture object.

UUID — Universal unique identifier
character vector

Universal unique identifier for architecture port, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the architecture port and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of architecture port, specified as a systemcomposer.arch.Model
object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')

2 Objects

2-76

Data Types: double

Object Functions
connect Create architecture model connections
setName Set name for port
setInterface Set interface for port
createInterface Create and set owned interface for port
makeOwnedInterfaceShared Convert owned interface to shared interface
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getQualifiedName Get model element qualified name
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);

 systemcomposer.arch.ArchitecturePort

2-77

physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

2 Objects

2-78

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.arch.ArchitecturePort

2-79

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

2 Objects

2-80

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

 systemcomposer.arch.ArchitecturePort

2-81

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

2 Objects

2-82

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

 systemcomposer.arch.ArchitecturePort

2-83

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

2 Objects

2-84

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.arch.Element | systemcomposer.arch.ComponentPort |
systemcomposer.arch.BasePort | addPort | Component

Topics
“Create Architecture Model”

 systemcomposer.arch.ArchitecturePort

2-85

systemcomposer.arch.BaseComponent
All components in architecture model

Description
A BaseComponent object cannot be constructed. Either create a
systemcomposer.arch.Component or systemcomposer.arch.VariantComponent object. The
systemcomposer.arch.BaseComponent class is derived from systemcomposer.arch.Element.

Properties
Name — Name of component
character vector

Name of component, specified as a character vector.
Example: 'newComponent'
Data Types: char

Architecture — Architecture that defines component structure
architecture object

Architecture that defines component structure, specified as a
systemcomposer.arch.Architecture object. For a component that references a different
architecture model, this property returns a handle to the root architecture of that model. For variant
components, the architecture is that of the active variant.

Parent — Architecture that owns component
architecture object

Architecture that owns component, specified as a systemcomposer.arch.Architecture object.

Ports — Input and output ports of component
component port object

Input and output ports of component, specified as a systemcomposer.arch.ComponentPort
object.

Parameters — Parameters of component
array of parameter objects

Parameters of component, specified as an array of systemcomposer.arch.Parameter objects.

OwnedArchitecture — Architecture owned by component
architecture object

Architecture owned by component, specified as a systemcomposer.arch.Architecture object.

OwnedPorts — Component ports
array of component port objects

2 Objects

2-86

Component ports, specified as an array of systemcomposer.arch.ComponentPort objects. For
reference components, this property is empty.

Position — Position of component on canvas
vector of coordinates in pixels

Position of component on canvas, specified as a vector of coordinates in pixels: [left top right
bottom].
Data Types: double

UUID — Universal unique identifier
character vector

Universal unique identifier for model component, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model component and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of component, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

 systemcomposer.arch.BaseComponent

2-87

Object Functions
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
isProtected Find if component reference model is protected
isReference Find if component is referenced to another model
connect Create architecture model connections
getPort Get port from component
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getParameter Get parameter from architecture or component
getEvaluatedParameterValue Get evaluated value of parameter from element
getParameterNames Get parameter names on element
getParameterValue Get value of parameter
setParameterValue Set value of parameter
setUnit Set units on parameter value
resetParameterToDefault Reset parameter on component to default value
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");

2 Objects

2-88

valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

 systemcomposer.arch.BaseComponent

2-89

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-90

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

 systemcomposer.arch.BaseComponent

2-91

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

2 Objects

2-92

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

 systemcomposer.arch.BaseComponent

2-93

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

2 Objects

2-94

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 systemcomposer.arch.BaseComponent

2-95

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

2 Objects

2-96

Version History
Introduced in R2019b

See Also
Component | systemcomposer.arch.Element | systemcomposer.arch.VariantComponent |
systemcomposer.arch.Component

Topics
“Create Architecture Model”

 systemcomposer.arch.BaseComponent

2-97

systemcomposer.arch.BaseConnector
All connectors in architecture model

Description
A BaseConnector object cannot be constructed. Create either a
systemcomposer.arch.Connector or a systemcomposer.arch.PhysicalConnector object.
The systemcomposer.arch.BaseConnector class is derived from
systemcomposer.arch.Element.

Properties
Name — Name of connector
character vector

Name of connector, specified as a character vector.
Example: 'newConnector'
Data Types: char

Parent — Architecture that owns connector
architecture object

Architecture that owns connector, specified as a systemcomposer.arch.Architecture object.

Ports — Ports of connection
array of port objects

Ports of connection, specified as an array of systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for model connector, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model connector and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of connector, specified as a systemcomposer.arch.Model object.

2 Objects

2-98

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
getDestinationElement Gets data elements selected on destination port for connection
getSourceElement Gets data elements selected on source port for connection
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

 systemcomposer.arch.BaseConnector

2-99

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

2 Objects

2-100

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

 systemcomposer.arch.BaseConnector

2-101

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");

2 Objects

2-102

addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.arch.BaseConnector

2-103

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-104

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.arch.BaseConnector

2-105

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

2 Objects

2-106

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 systemcomposer.arch.BaseConnector

2-107

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2021b

See Also
systemcomposer.arch.Element | systemcomposer.arch.Connector |
systemcomposer.arch.PhysicalConnector | Component

2 Objects

2-108

Topics
“Create Architecture Model”
“Implement Component Behavior Using Simscape”

 systemcomposer.arch.BaseConnector

2-109

systemcomposer.arch.BasePort
All ports in architecture model

Description
A BasePort object cannot be constructed. Create either a
systemcomposer.arch.ArchitecturePort or a systemcomposer.arch.ComponentPort
object. The systemcomposer.arch.BasePort class is derived from
systemcomposer.arch.Element.

Properties
Name — Name of port
character vector

Name of port, specified as a character vector.
Example: 'newPort'
Data Types: char

Direction — Port direction
'Input' | 'Output' | 'Physical' | 'Client' | 'Server'

Port direction, specified as a character vector.
Data Types: char

Parent — Architecture that owns port
architecture object

Architecture that owns port, specified as a systemcomposer.arch.Architecture object.

InterfaceName — Name of interface associated with port
character vector

Name of interface associated with port, specified as a character vector.
Data Types: char

Interface — Interface associated with port
data interface object | value type object | physical interface object | service interface object

Interface associated with port, specified as a systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

Connectors — Port connectors
array of connector objects

Port connectors, specified as an array of systemcomposer.arch.Connector or
systemcomposer.arch.PhysicalConnector objects.

2 Objects

2-110

Connected — Whether port has connections
true or 1 | false or 0

Whether port has connections, specified as a logical.
Data Types: logical

UUID — Universal unique identifier
character vector

Universal unique identifier for model port, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model port and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of port, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property

 systemcomposer.arch.BasePort

2-111

getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

2 Objects

2-112

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

 systemcomposer.arch.BasePort

2-113

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

2 Objects

2-114

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile
profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...

 systemcomposer.arch.BasePort

2-115

 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

2 Objects

2-116

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

 systemcomposer.arch.BasePort

2-117

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

2 Objects

2-118

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.arch.BasePort

2-119

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.arch.Element | systemcomposer.arch.ComponentPort |
systemcomposer.arch.ArchitecturePort | Component

Topics
“Create Architecture Model”

2 Objects

2-120

systemcomposer.arch.Component
System Composer component

Description
A Component object represents a component in a System Composer model. This class inherits from
systemcomposer.arch.BaseComponent. This class is derived from
systemcomposer.arch.Element.

Creation
Create a component in an architecture model using the addComponent function.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
component = addComponent(arch,'newComponent');

Properties
Name — Name of component
character vector

Name of component, specified as a character vector.
Example: 'newComponent'
Data Types: char

Parent — Architecture that owns component
architecture object

Architecture that owns component, specified as a systemcomposer.arch.Architecture object.

Architecture — Architecture that defines component structure
architecture object

Architecture that defines component structure, specified as a
systemcomposer.arch.Architecture object. For a component that references a different
architecture model, this property returns a handle to the root architecture of that model. For variant
components, the architecture is that of the active variant.

OwnedArchitecture — Architecture that component owns
architecture object

Architecture that component owns, specified as a systemcomposer.arch.Architecture object.
For components that reference an architecture, this property is empty. For variant components, this
property is the architecture in which the individual variant components reside.

Ports — Array of component ports
array of component port objects

 systemcomposer.arch.Component

2-121

Array of component ports, specified as an array of systemcomposer.arch.ComponentPort
objects.

OwnedPorts — Array of component ports
array of component port objects

Array of component ports, specified as an array of systemcomposer.arch.ComponentPort
objects. For reference components, this property is empty.

Parameters — Parameters of component
array of parameter objects

Parameters of component, specified as an array of systemcomposer.arch.Parameter objects.

Position — Position of component on canvas
vector of coordinates in pixels

Position of component on canvas, specified as a vector of coordinates, in pixels [left top right
bottom].

ReferenceName — Name of model that component references
character vector

Name of model that component references if linked component, specified as a character vector.
Data Types: char

IsAdapterComponent — Whether component is adapter block
true or 1 | false or 0

Whether component is adapter block, specified as a logical.
Data Types: logical

UUID — Universal unique identifier
character vector

Universal unique identifier for model component, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model component and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of component, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

2 Objects

2-122

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
createArchitectureModel Create architecture model from component
createSimulinkBehavior Create Simulink behavior and link to component
createStateflowChartBehavior Add Stateflow chart behavior to component
linkToModel Link component to model
inlineComponent Remove reference architecture or behavior from component
makeVariant Convert component to variant choice
isProtected Find if component reference model is protected
isReference Find if component is referenced to another model
connect Create architecture model connections
getPort Get port from component
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getQualifiedName Get model element qualified name
getParameter Get parameter from architecture or component
getEvaluatedParameterValue Get evaluated value of parameter from element
getParameterNames Get parameter names on element
getParameterValue Get value of parameter
setParameterValue Set value of parameter
setUnit Set units on parameter value
resetParameterToDefault Reset parameter on component to default value
destroy Remove model element

Examples

 systemcomposer.arch.Component

2-123

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

2 Objects

2-124

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

 systemcomposer.arch.Component

2-125

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

2 Objects

2-126

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');

 systemcomposer.arch.Component

2-127

setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

2 Objects

2-128

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

 systemcomposer.arch.Component

2-129

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

2 Objects

2-130

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.arch.Component

2-131

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.arch.Architecture | systemcomposer.arch.Element | createModel |
addComponent | Component

Topics
“Create Architecture Model”

2 Objects

2-132

systemcomposer.arch.ComponentPort
Component port

Description
A ComponentPort object represents the input, output, and physical ports of a System Composer
component. This class inherits from systemcomposer.arch.BasePort. This class is derived from
systemcomposer.arch.Element.

Creation
A component port is constructed by creating an architecture port on the architecture of the
component using the addPort function, then getting the component port using the getPort
function.

addPort(compObj.Architecture,'portName','in');
compPortObj = getPort(compObj,'portName');

Properties
Name — Name of port
character vector

Name of port, specified as a character vector.
Example: 'portName'
Data Types: char

Direction — Port direction
'Input' | 'Output' | 'Physical' | 'Client' | 'Server'

Port direction, specified as a character vector.
Data Types: char

InterfaceName — Name of interface
character vector

Name of interface associated with port, specified as a character vector.
Data Types: char

Interface — Interface associated with port
data interface object | value type object | physical interface object | service interface object

Interface associated with port, specified as a systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

 systemcomposer.arch.ComponentPort

2-133

Connectors — Port connectors
array of connector objects

Port connectors, specified as an array of systemcomposer.arch.Connector or
systemcomposer.arch.PhysicalConnector objects.

Connected — Whether port has connections
true or 1 | false or 0

Whether port has connections, specified as a logical.
Data Types: logical

Parent — Component that owns port
architecture object

Component that owns port, specified as a systemcomposer.arch.Architecture object.

ArchitecturePort — Architecture port
architecture port object

Architecture port within the component that maps to port, specified as a
systemcomposer.arch.ArchitecturePort object.

UUID — Universal unique identifier
character vector

Universal unique identifier for model component port, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model component port and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of port, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

2 Objects

2-134

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
setName Set name for port
setInterface Set interface for port
createInterface Create and set owned interface for port
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
connect Create architecture model connections
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getQualifiedName Get model element qualified name

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

 systemcomposer.arch.ComponentPort

2-135

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

2 Objects

2-136

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.arch.ComponentPort

2-137

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

2 Objects

2-138

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.arch.ComponentPort

2-139

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-140

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.arch.ComponentPort

2-141

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

2 Objects

2-142

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 systemcomposer.arch.ComponentPort

2-143

Version History
Introduced in R2019a

See Also
systemcomposer.arch.ArchitecturePort | systemcomposer.arch.BasePort |
systemcomposer.arch.Element | getPort | addPort | Component

Topics
“Create Architecture Model”

2 Objects

2-144

systemcomposer.arch.Connector
Connector between ports

Description
A Connector object represents a connector between ports for a System Composer model. This class
inherits from systemcomposer.arch.BaseConnector. This class is derived from
systemcomposer.arch.Element.

Creation
Create connectors using the connect function.

conns = connect(architecture,outPorts,inPorts)

Properties
Parent — Parent architecture that owns connector
architecture object

Parent architecture that owns connector, specified as a systemcomposer.arch.Architecture
object.

Name — Name of connector
character vector

Name of connector, specified as a character vector.
Data Types: char

SourcePort — Source of connection
architecture port object | component port object

Source of connection as output port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

DestinationPort — Destination of connection
architecture port object | component port object

Destination of connection as input port, specified as a systemcomposer.arch.ArchitecturePort
or systemcomposer.arch.ComponentPort object.

Ports — Ports of connection
array of port objects

Ports of connection, specified as an array of systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort objects.

UUID — Universal unique identifier
character vector

 systemcomposer.arch.Connector

2-145

Universal unique identifier for model connector, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model connector and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of connector, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
getSourceElement Gets data elements selected on source port for connection
getDestinationElement Gets data elements selected on destination port for connection
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property

2 Objects

2-146

getQualifiedName Get model element qualified name
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

 systemcomposer.arch.Connector

2-147

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

2 Objects

2-148

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

 systemcomposer.arch.Connector

2-149

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');

2 Objects

2-150

setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

 systemcomposer.arch.Connector

2-151

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

2 Objects

2-152

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

 systemcomposer.arch.Connector

2-153

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

2 Objects

2-154

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.arch.Element | systemcomposer.arch.BaseConnector |
systemcomposer.arch.PhysicalConnector | connect | Component

Topics
“Create Architecture Model”

 systemcomposer.arch.Connector

2-155

systemcomposer.arch.Element
All model elements

Description
The Element class is the base class for all System Composer model elements:

• systemcomposer.arch.Architecture
• systemcomposer.arch.Component
• systemcomposer.arch.VariantComponent
• systemcomposer.arch.BaseComponent
• systemcomposer.arch.ComponentPort
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.BasePort
• systemcomposer.arch.Connector
• systemcomposer.arch.PhysicalConnector
• systemcomposer.arch.BaseConnector

Creation
Create a component using the addComponent function, a port using the addPort function, or a
connector using the connect function.

Properties
UUID — Universal unique identifier
character vector

Universal unique identifier for model element, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model element and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of element, specified as a systemcomposer.arch.Model object.

2 Objects

2-156

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

 systemcomposer.arch.Element

2-157

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});

2 Objects

2-158

planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.arch.Element

2-159

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

2 Objects

2-160

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.arch.Element

2-161

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-162

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.arch.Element

2-163

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

2 Objects

2-164

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 systemcomposer.arch.Element

2-165

Version History
Introduced in R2019a

See Also
Topics
“Create Architecture Model”

2 Objects

2-166

systemcomposer.arch.Function
Software architecture function

Description
A Function object represents a function in a software architecture model.

Use the Functions Editor from the toolstrip on a software architecture model, to edit the simulation
execution order and sample time of functions with inherited sample time (-1) in your software
architecture.

Creation
Get functions in a software architecture model with the Functions property on the
systemcomposer.arch.Architecture object.

model = systemcomposer.openModel('ThrottleControlComposition');
sim('ThrottleControlComposition');
functions = model.Architecture.Functions

Properties
Model — Architecture model
model object

Architecture model where element belongs, specified as a systemcomposer.arch.Model object.

Name — Name of function
character vector

Name of function, specified as a character vector.
Data Types: char

Component — Component where function is defined
component object

Component where function is defined, specified as a systemcomposer.arch.Component object.

Parent — Parent architecture of element
architecture object

Parent architecture of element where function is defined, specified as a
systemcomposer.arch.Architecture object.

Period — Period of function
numeric | string

 systemcomposer.arch.Function

2-167

Period of function, specified as a numeric value convertible to a string, or a string of valid MATLAB
variables. The Period property of aperiodic functions is editable. Editing the Period property of a
periodic function will result in an error.

ExecutionOrder — Execution order of functions
row vector of numeric values

Execution order of functions, specified as a row vector of numeric values.
Example: [model.Architecture.Functions.ExecutionOrder]
Data Types: uint64

UUID — Universal unique identifier
character vector

Universal unique identifier for function, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier for function, specified as a character vector. The external ID is preserved
over the lifespan of the function and through all operations that preserve the UUID.
Data Types: char

Object Functions
increaseExecutionOrder Change function execution order to later
decreaseExecutionOrder Change function execution order to earlier
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Change Execution Order of Software Functions

This example shows the software architecture of a throttle position control system and how to
schedule the execution order of the root level functions.

model = systemcomposer.openModel("ThrottleControlComposition");

Simulate the model to populate it with functions.

2 Objects

2-168

sim("ThrottleControlComposition");

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

Decrease the execution order of the third function.

decreaseExecutionOrder(model.Architecture.Functions(3))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'TPS_Primary_read_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The third function is now moved up in execution order, executing earlier.

Increase the execution order of the second function.

increaseExecutionOrder(model.Architecture.Functions(2))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The second function is now moved down in execution order, executing later.

 systemcomposer.arch.Function

2-169

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

2 Objects

2-170

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

 systemcomposer.arch.Function

2-171

Version History
Introduced in R2021b

See Also
systemcomposer.createModel | createArchitectureModel | createSimulinkBehavior

Topics
“Modeling Software Architecture of Throttle Position Control System”
“Simulate and Deploy Software Architectures”
“Author Software Architectures”

2 Objects

2-172

systemcomposer.arch.Model
System Composer model

Description
A Model object is used to manage architecture objects in a System Composer model.

Creation
Create a model using the createModel function.

objModel = systemcomposer.createModel('NewModel')

Properties
Name — Name of model
character vector

Name of model, specified as a character vector. This property must be a valid MATLAB identifier.
Example: 'NewModel'
Data Types: char

Architecture — Root architecture
architecture object

Root architecture of model, specified as a systemcomposer.arch.Architecture object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

Profiles — Profiles
array of profile objects

Profiles attached to the model, specified as an array of systemcomposer.profile.Profile
objects.

InterfaceDictionary — Dictionary object that holds interfaces
dictionary object

 systemcomposer.arch.Model

2-173

Dictionary object that holds interfaces, specified as a systemcomposer.interface.Dictionary
object. If the model is not linked to an external dictionary, this property is a handle to the implicit
dictionary.

Views — Views
array of view objects

Views, specified as an array of systemcomposer.view.View objects.
Example: objView = get(objModel,'Views')

Object Functions
open Open architecture model
close Close architecture model
save Save architecture model or data dictionary
find Find architecture model elements using query
lookup Search for architectural element
openViews Open Architecture Views Gallery
createView Create architecture view
getView Find architecture view
deleteView Delete architecture view
applyProfile Apply profile to model
removeProfile Remove profile from model
saveToDictionary Save interfaces to dictionary
linkDictionary Link data dictionary to architecture model
unlinkDictionary Unlink data dictionary from architecture model
renameProfile Rename profile in model
iterate Iterate over model elements

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the

2 Objects

2-174

value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

 systemcomposer.arch.Model

2-175

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-176

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

 systemcomposer.arch.Model

2-177

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

2 Objects

2-178

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

 systemcomposer.arch.Model

2-179

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

2 Objects

2-180

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 systemcomposer.arch.Model

2-181

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

2 Objects

2-182

Version History
Introduced in R2019a

See Also
createModel | loadModel | importModel | exportModel | openModel |
createArchitectureModel

Topics
“Create Architecture Model”

 systemcomposer.arch.Model

2-183

systemcomposer.arch.Parameter
Parameter in System Composer

Description
A Parameter object describes a parameter in System Composer. Set the default properties of a
parameter by setting the Type property. To edit and view the instance-specific parameters specified
as model arguments on a component, architecture, or reference model, change the Value and Unit
properties of each Parameter object.

Creation
Create a Parameter object using the addParameter function on a
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent, or
systemcomposer.arch.Architecture object.

Properties
Name — Parameter name
character vector | string

Parameter name, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Example: "advanceSpeed"
Data Types: char | string

Value — Parameter value
character vector | string

Parameter value, specified as a character vector or string.
Example: "120"
Data Types: char | string

Unit — Parameter unit
character vector | string

Parameter unit, specified as a character vector or string.
Example: "mph"
Data Types: char | string

Type — Type of parameter
value type object

Type of parameter, specified as a systemcomposer.ValueType object.

2 Objects

2-184

Parent — Parent architecture or component that owns parameter
component object | variant component object | architecture object

Parent architecture or component that owns parameter, specified as a
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent, or
systemcomposer.arch.Architecture object.

Object Functions
getParameterPromotedFrom Get source parameter promoted from
resetToDefault Resets parameter value to default
destroy Remove model element

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'

 systemcomposer.arch.Parameter

2-185

 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

Get the LeftWheel component parameter values.

2 Objects

2-186

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

 systemcomposer.arch.Parameter

2-187

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

2 Objects

2-188

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 systemcomposer.arch.Parameter

2-189

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

2 Objects

2-190

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 systemcomposer.arch.Parameter

2-191

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

2 Objects

2-192

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

 systemcomposer.arch.Parameter

2-193

Version History
Introduced in R2022b

See Also
addParameter | getParameter | getEvaluatedParameterValue | getParameterNames |
setParameterValue | getParameterValue | setUnit | resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

2 Objects

2-194

systemcomposer.arch.PhysicalConnector
Connector between physical ports

Description
A PhysicalConnector object represents a connector between physical ports for a System
Composer model. This class inherits from systemcomposer.arch.BaseConnector. This class is
derived from systemcomposer.arch.Element.

Creation
Create physical connectors using the connect function.

physConns = connect(architecture,physPortsA,physPortsB)

Properties
Name — Name of connector
character vector

Name of connector, specified as a character vector.
Example: 'newConnector'
Data Types: char

Parent — Architecture that owns connector
architecture object

Architecture that owns connector, specified as a systemcomposer.arch.Architecture object.

Ports — Ports of connection
array of port objects

Ports of connection, specified as an array of systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for model connector, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the model connector and through all operations that preserve the UUID.

 systemcomposer.arch.PhysicalConnector

2-195

Data Types: char

Model — Parent model
model object

Parent System Composer model of connector, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
getSourceElement Gets data elements selected on source port for connection
getDestinationElement Gets data elements selected on destination port for connection
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getQualifiedName Get model element qualified name
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

2 Objects

2-196

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

 systemcomposer.arch.PhysicalConnector

2-197

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

2 Objects

2-198

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

 systemcomposer.arch.PhysicalConnector

2-199

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

2 Objects

2-200

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

 systemcomposer.arch.PhysicalConnector

2-201

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

2 Objects

2-202

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 systemcomposer.arch.PhysicalConnector

2-203

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

2 Objects

2-204

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2021b

See Also
systemcomposer.arch.Element | systemcomposer.arch.BaseConnector |
systemcomposer.arch.Connector | connect | Component

 systemcomposer.arch.PhysicalConnector

2-205

Topics
“Create Architecture Model”
“Implement Component Behavior Using Simscape”

2 Objects

2-206

systemcomposer.arch.VariantComponent
Variant component in System Composer model

Description
A VariantComponent object represents a variant component that allows you to create multiple
design alternatives for a component in a System Composer model. This class inherits from
systemcomposer.arch.BaseComponent. This class is derived from
systemcomposer.arch.Element.

Creation
Create a variant component using the addVariantComponent function.

varComp = addVariantComponent(archObj,'compName');

Properties
Name — Name of variant component
character vector

Name of variant component, specified as a character vector.
Data Types: char

Position — Position of component on canvas
vector of coordinates in pixels

Position of component on canvas, specified as a vector of coordinates in pixels: [left top right
bottom].

Parent — Architecture that owns variant component
architecture object

Architecture that owns variant component, specified as a systemcomposer.arch.Architecture
object.

Architecture — Architecture of active variant choice
architecture object

Architecture of the active variant choice, specified as a systemcomposer.arch.Architecture
object.

Ports — Input and output ports
component port objects

Input and output ports of variant component, specified as systemcomposer.arch.ComponentPort
objects.

 systemcomposer.arch.VariantComponent

2-207

Parameters — Parameters of component
array of parameter objects

Parameters of component, specified as an array of systemcomposer.arch.Parameter objects.

OwnedArchitecture — Architecture owned by variant component
architecture object

Architecture owned by variant component, specified as a systemcomposer.arch.Architecture
object.

OwnedPorts — Array of component ports
array of component port objects

Array of component ports, specified as an array of systemcomposer.arch.ComponentPort
objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for variant component, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the variant component and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

Parent System Composer model of component, specified as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

SimulinkModelHandle — Simulink handle to parent model
numeric value

Simulink handle to parent System Composer model, specified as a double.

This property is necessary for several Simulink related workflows and for using Requirements
Toolbox programmatic interfaces.

2 Objects

2-208

Example: handle = get(object,'SimulinkModelHandle')
Data Types: double

Object Functions
addChoice Add variant choices to variant component
setCondition Set condition on variant choice
setActiveChoice Set active choice on variant component
getChoices Get available choices in variant component
getActiveChoice Get active choice on variant component
getCondition Return variant control on choice within variant component
isProtected Find if component reference model is protected
isReference Find if component is referenced to another model
connect Create architecture model connections
getPort Get port from component
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
getQualifiedName Get model element qualified name
getParameter Get parameter from architecture or component
getEvaluatedParameterValue Get evaluated value of parameter from element
getParameterNames Get parameter names on element
getParameterValue Get value of parameter
setParameterValue Set value of parameter
setUnit Set units on parameter value
resetParameterToDefault Reset parameter on component to default value
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

 systemcomposer.arch.VariantComponent

2-209

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});

2 Objects

2-210

planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.arch.VariantComponent

2-211

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

2 Objects

2-212

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.arch.VariantComponent

2-213

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-214

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.arch.VariantComponent

2-215

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

2 Objects

2-216

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 systemcomposer.arch.VariantComponent

2-217

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
Variant Component

Topics
“Decompose and Reuse Components”

2 Objects

2-218

systemcomposer.interface.DataElement
Data element in data interface

Description
A DataElement object represents a data element in a data interface.

Creation
Create a data element using the addElement function.

element = addElement(interface,'newElement')

Properties
Interface — Parent data interface of data element
data interface object

Parent data interface of data element, specified as a
systemcomposer.interface.DataInterface object.

Name — Data element name
character vector | string

Data element name, specified as a character vector or string.
Example: 'newElement'
Data Types: char | string

Type — Type of data element
data interface object | value type object

Type of data element, specified as a systemcomposer.interface.DataInterface or
systemcomposer.ValueType object.

Dimensions — Dimensions of data element
character vector | string

Dimensions of data element, specified as a character vector or string.
Data Types: char | string

Description — Description of data element
character vector | string

Description of data element, specified as a character vector or string.
Data Types: char | string

 systemcomposer.interface.DataElement

2-219

UUID — Universal unique identifier
character vector

Universal unique identifier for data element, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the data element and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element
setType Set shared type on data element or function argument
setDimensions Set dimensions for value type
setUnits Set units for value type
setComplexity Set complexity for value type
setMinimum Set minimum for value type
setMaximum Set maximum for value type
setDescription Set description for value type or interface
createOwnedType Create owned value type on data element or function argument
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

2 Objects

2-220

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

 systemcomposer.interface.DataElement

2-221

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-222

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

 systemcomposer.interface.DataElement

2-223

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

2 Objects

2-224

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

 systemcomposer.interface.DataElement

2-225

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

2 Objects

2-226

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

 systemcomposer.interface.DataElement

2-227

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

2 Objects

2-228

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addElement | removeElement | getElement | systemcomposer.ValueType |
systemcomposer.interface.Dictionary | systemcomposer.interface.DataInterface

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 systemcomposer.interface.DataElement

2-229

systemcomposer.interface.DataInterface
Data interface

Description
A DataInterface object represents the structure of a data interface.

Creation
Create a data interface using the addInterface function.

interface = addInterface(dictionary,'newInterface')

Properties
Owner — Parent of data interface
dictionary object | data element object | architecture port object

Parent of data interface, specified as a systemcomposer.interface.Dictionary,
systemcomposer.interface.DataElement, or systemcomposer.arch.ArchitecturePort
object.

Model — Parent model
model object

Parent System Composer model of data interface, specified as a systemcomposer.arch.Model
object.

Name — Data interface name
character vector | string

Data interface name, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Example: 'newInterface'
Data Types: char | string

Elements — Elements in interface
array of data element objects

Elements in interface, specified as an array of systemcomposer.interface.DataElement objects.

Description — Data interface description
character vector | string

Data interface description, specified as a character vector or string.
Data Types: char | string

2 Objects

2-230

UUID — Universal unique identifier
character vector

Universal unique identifier for data interface, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the data interface and through all operations that preserve the UUID.
Data Types: char

Object Functions
addElement Add element
getElement Get object for element
removeElement Remove element
setName Set name for value type, function argument, interface, or element
setDescription Set description for value type or interface
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
getStereotypeProperties Get stereotype property names on element
removeStereotype Remove stereotype from model element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
setProperty Set property value corresponding to stereotype applied to element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

 systemcomposer.interface.DataInterface

2-231

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});

2 Objects

2-232

planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.interface.DataInterface

2-233

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

2 Objects

2-234

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

 systemcomposer.interface.DataInterface

2-235

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

2 Objects

2-236

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

 systemcomposer.interface.DataInterface

2-237

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

2 Objects

2-238

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 systemcomposer.interface.DataInterface

2-239

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createInterface | setInterface | addInterface | getInterface | getInterfaceNames |
removeInterface | systemcomposer.ValueType | systemcomposer.interface.Dictionary
| systemcomposer.interface.DataElement

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-240

systemcomposer.interface.Dictionary
Interface data dictionary of architecture model

Description
A Dictionary object represents the interface data dictionary of a System Composer model.

Creation
Create an interface data dictionary using the systemcomposer.createDictionary function.

dictionary = systemcomposer.createDictionary('newDictionary.sldd');

Properties
Interfaces — Interfaces defined in dictionary
array of interface objects

Interfaces defined in dictionary, specified as an array of
systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface objects.

Profiles — Profiles attached to dictionary
array of profile objects

Profiles attached to dictionary, specified as an array of systemcomposer.profile.Profile
objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for interface data dictionary, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the interface data dictionary and through all operations that preserve the UUID.
Data Types: char

Object Functions
addValueType Create named value type in interface dictionary

 systemcomposer.interface.Dictionary

2-241

addInterface Create named data interface in interface dictionary
addPhysicalInterface Create named physical interface in interface dictionary
addServiceInterface Create named service interface in interface dictionary
getInterface Get object for named interface in interface dictionary
getInterfaceNames Get names of all interfaces in interface dictionary
removeInterface Remove named interface from interface dictionary
applyProfile Apply profile to model
removeProfile Remove profile from model
save Save architecture model or data dictionary
saveToDictionary Save interfaces to dictionary
addReference Add reference to dictionary
removeReference Remove reference to dictionary
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

2 Objects

2-242

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

 systemcomposer.interface.Dictionary

2-243

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-244

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

 systemcomposer.interface.Dictionary

2-245

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

2 Objects

2-246

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

 systemcomposer.interface.Dictionary

2-247

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

2 Objects

2-248

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 systemcomposer.interface.Dictionary

2-249

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

2 Objects

2-250

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

 systemcomposer.interface.Dictionary

2-251

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

2 Objects

2-252

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

 systemcomposer.interface.Dictionary

2-253

Version History
Introduced in R2019a

See Also
openDictionary | createDictionary | saveToDictionary | systemcomposer.ValueType |
systemcomposer.interface.DataElement | systemcomposer.interface.DataInterface |
systemcomposer.interface.PhysicalInterface |
systemcomposer.interface.PhysicalElement |
systemcomposer.interface.PhysicalDomain |
systemcomposer.interface.ServiceInterface |
systemcomposer.interface.FunctionElement

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”
“Specify Physical Interfaces on Ports”
“Client-Server Interfaces in Class Diagram View”

2 Objects

2-254

systemcomposer.interface.FunctionArgument
Function argument in function element in client-server interface

Description
A FunctionArgument object describes the attributes of an argument in a function element
systemcomposer.interface.FunctionElement.

Creation
Set a function prototype using the setFunctionPrototype function and then get a function
argument using the getFunctionArgument function.

setFunctionPrototype(element,"y=f0(u)")
argument = getFunctionArgument(functionElement,"y")

Properties
Interface — Parent service interface of function argument
service interface object

Parent service interface of function argument, specified as a
systemcomposer.interface.ServiceInterface object.

Name — Function argument name
character vector | string

Function argument name, specified as a character vector or string.
Example: "y"
Data Types: char | string

Type — Type of function argument
value type object

Type of function argument, specified as a systemcomposer.ValueType object.

Dimensions — Dimensions of function argument
character vector | string

Dimensions of function argument, specified as a character vector or string.
Data Types: char | string

Description — Description of function argument
character vector | string

Description of function argument, specified as a character vector or string.
Data Types: char | string

 systemcomposer.interface.FunctionArgument

2-255

UUID — Universal unique identifier
character vector

Universal unique identifier for function argument, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the function argument and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element
setType Set shared type on data element or function argument
setDimensions Set dimensions for value type
setUnits Set units for value type
setComplexity Set complexity for value type
setMinimum Set minimum for value type
setMaximum Set maximum for value type
setDescription Set description for value type or interface
createOwnedType Create owned value type on data element or function argument
destroy Remove model element

Examples

Get Function Argument

Create a new model.
model = systemcomposer.createModel("archModel","SoftwareArchitecture",true);

Create a service interface.
interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface");

Create a function element.

element = addElement(interface,"newFunctionElement");

Set a function prototype to add function arguments.

setFunctionPrototype(element,"y=f0(u)")

Get a function argument.

argument = getFunctionArgument(element,"y")

argument =

 FunctionArgument with properties:

2 Objects

2-256

 Interface: [1×1 systemcomposer.interface.ServiceInterface]
 Element: [1×1 systemcomposer.interface.FunctionElement]
 Name: 'y'
 Type: [1×1 systemcomposer.ValueType]
 Dimensions: '1'
 Description: ''
 UUID: '018b4e55-fa8f-4250-ac2b-df72bf620feb'
 ExternalUID: ''

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

 systemcomposer.interface.FunctionArgument

2-257

Term Definition Application More Information
service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

2 Objects

2-258

Term Definition Application More Information
class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 systemcomposer.interface.FunctionArgument

2-259

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

2 Objects

2-260

See Also
addElement | removeElement | getElement | systemcomposer.interface.Dictionary

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

 systemcomposer.interface.FunctionArgument

2-261

systemcomposer.interface.FunctionElement
Function in client-server interface

Description
A FunctionElement object describes the attributes of a function in a client-server interface
systemcomposer.interface.ServiceInterface.

Creation
Create a function element using the addElement function.

element = addElement(serviceInterface,"f0")

Properties
Interface — Parent service interface of function element
service interface object

Parent service interface of function element, specified as a
systemcomposer.interface.ServiceInterface object.

Name — Function element name
character vector | string

Function element name, specified as a character vector or string.
Example: "newFunctionElement"
Data Types: char | string

Asynchronous — Whether function element is asynchronous
true or 1 | false or 0

Whether function element is asynchronous, specified as a logical.
Data Types: logical

FunctionPrototype — Function prototype
character vector | string

Function prototype to define input and output arguments, specified as a character vector or string.
Example: "[y1,y2]=f1(u1,u2)"
Data Types: char | string

FunctionArguments — Function arguments
array of function argument objects

2 Objects

2-262

Function arguments, specified as an array of systemcomposer.interface.FunctionArgument
objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for function element, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the function element and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element
setFunctionPrototype Set prototype for function element
getFunctionArgument Get function argument on function element
setAsynchronous Set function element as asynchronous
destroy Remove model element

Examples

Get Function Argument

Create a new model.
model = systemcomposer.createModel("archModel","SoftwareArchitecture",true);

Create a service interface.
interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface");

Create a function element.

element = addElement(interface,"newFunctionElement");

Set a function prototype to add function arguments.

setFunctionPrototype(element,"y=f0(u)")

Get a function argument.

argument = getFunctionArgument(element,"y")

argument =

 FunctionArgument with properties:

 Interface: [1×1 systemcomposer.interface.ServiceInterface]

 systemcomposer.interface.FunctionElement

2-263

 Element: [1×1 systemcomposer.interface.FunctionElement]
 Name: 'y'
 Type: [1×1 systemcomposer.ValueType]
 Dimensions: '1'
 Description: ''
 UUID: '018b4e55-fa8f-4250-ac2b-df72bf620feb'
 ExternalUID: ''

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

2 Objects

2-264

Term Definition Application More Information
service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

 systemcomposer.interface.FunctionElement

2-265

Term Definition Application More Information
class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

2 Objects

2-266

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

 systemcomposer.interface.FunctionElement

2-267

See Also
addElement | removeElement | getElement | systemcomposer.interface.Dictionary

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

2 Objects

2-268

systemcomposer.interface.PhysicalDomain
Physical domain in System Composer

Description
A PhysicalDomain object describes a physical domain in System Composer. A physical domain can
be used as an owned interface on a port and typed to a physical element on a physical interface.

Creation
Create an owned interface using a physical domain on a port.

model = systemcomposer.createModel('archModel',true);
rootArch = get(model,'Architecture');
newComponent = addComponent(rootArch,'newComponent');
newPort = addPort(newComponent.Architecture,'newCompPort','physical');
port = newComponent.getPort('newCompPort');
interface = port.createInterface;
interface.Domain = 'mechanical.rotational.rotational'

Properties
Owner — Parent of physical domain
architecture port object

Parent of physical domain, specified as a systemcomposer.arch.ArchitecturePort object.

Model — Parent model
model object

Parent System Composer model of physical domain, specified as a systemcomposer.arch.Model
object.

Domain — Physical domain
character vector | string

Physical domain, specified as a character vector or string of a partial physical domain name. For a list
of valid physical domain names, see “Domain-Specific Line Styles” (Simscape).
Data Types: char | string

UUID — Universal unique identifier
character vector

Universal unique identifier for physical domain, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

 systemcomposer.interface.PhysicalDomain

2-269

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the physical domain and through all operations that preserve the UUID.
Data Types: char

Object Functions
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

2 Objects

2-270

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

 systemcomposer.interface.PhysicalDomain

2-271

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-272

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

 systemcomposer.interface.PhysicalDomain

2-273

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

2 Objects

2-274

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

 systemcomposer.interface.PhysicalDomain

2-275

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

2 Objects

2-276

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

 systemcomposer.interface.PhysicalDomain

2-277

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

2 Objects

2-278

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createInterface | addPhysicalInterface |
systemcomposer.interface.PhysicalInterface |
systemcomposer.interface.PhysicalElement | systemcomposer.interface.Dictionary

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 systemcomposer.interface.PhysicalDomain

2-279

systemcomposer.interface.PhysicalElement
Physical element in physical interface

Description
A PhysicalElement object represents a physical element in a physical interface.

Creation
Create a physical element using the addElement function.

element = addElement(interface,"newPhysicalElement")

Properties
Interface — Parent physical interface of physical element
physical interface object

Parent physical interface of physical element, specified as a
systemcomposer.interface.PhysicalInterface object.

Name — Physical element name
character vector | string

Physical element name, specified as a character vector or string.
Example: "newPhysicalElement"
Data Types: char | string

Type — Type of physical element
physical interface object | physical domain object | character vector | string

Type of physical element, specified as a systemcomposer.interface.PhysicalInterface or
systemcomposer.interface.PhysicalDomain object or a character vector or string of the
partial physical domain name. For a list of valid physical domain names, see “Domain-Specific Line
Styles” (Simscape).

UUID — Universal unique identifier
character vector

Universal unique identifier for physical element, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

2 Objects

2-280

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the physical element and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

 systemcomposer.interface.PhysicalElement

2-281

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

2 Objects

2-282

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

 systemcomposer.interface.PhysicalElement

2-283

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile
profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...

2 Objects

2-284

 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

 systemcomposer.interface.PhysicalElement

2-285

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

2 Objects

2-286

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

 systemcomposer.interface.PhysicalElement

2-287

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

2 Objects

2-288

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 systemcomposer.interface.PhysicalElement

2-289

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addPhysicalInterface | addElement | removeElement | getElement |
systemcomposer.interface.Dictionary | systemcomposer.interface.PhysicalDomain |
systemcomposer.interface.PhysicalInterface

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-290

systemcomposer.interface.PhysicalInterface
Physical interface

Description
A PhysicalInterface object represents the structure of a physical interface.

Creation
Create a physical interface using the addPhysicalInterface function.
interface = addPhysicalInterface(model.InterfaceDictionary,"newPhysicalInterface")

Properties
Owner — Parent of physical interface
dictionary object | physical element object | architecture port object

Parent of physical interface, specified as a systemcomposer.interface.Dictionary,
systemcomposer.interface.PhysicalElement, or
systemcomposer.arch.ArchitecturePort object.

Model — Parent model
model object

Parent System Composer model of physical interface, specified as a systemcomposer.arch.Model
object.

Name — Physical interface name
character vector | string

Physical interface name, specified as a character vector or string. This property must be a valid
MATLAB identifier.
Example: "newPhysicalInterface"
Data Types: char | string

Elements — Elements in interface
array of physical element objects

Elements in interface, specified as an array of systemcomposer.interface.PhysicalElement
objects.

Description — Physical interface description
character vector | string

Physical interface description, specified as a character vector or string.
Data Types: char | string

 systemcomposer.interface.PhysicalInterface

2-291

UUID — Universal unique identifier
character vector

Universal unique identifier for physical interface, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the physical interface and through all operations that preserve the UUID.
Data Types: char

Object Functions
addElement Add element
getElement Get object for element
removeElement Remove element
setName Set name for value type, function argument, interface, or element
setDescription Set description for value type or interface
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
getStereotypeProperties Get stereotype property names on element
removeStereotype Remove stereotype from model element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
setProperty Set property value corresponding to stereotype applied to element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

2 Objects

2-292

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});

 systemcomposer.interface.PhysicalInterface

2-293

planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-294

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");

 systemcomposer.interface.PhysicalInterface

2-295

addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

2 Objects

2-296

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

 systemcomposer.interface.PhysicalInterface

2-297

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

2 Objects

2-298

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

 systemcomposer.interface.PhysicalInterface

2-299

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

2 Objects

2-300

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 systemcomposer.interface.PhysicalInterface

2-301

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addPhysicalInterface | setInterface | getInterface | getInterfaceNames |
removeInterface | systemcomposer.interface.Dictionary |
systemcomposer.interface.PhysicalElement |
systemcomposer.interface.PhysicalDomain

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-302

systemcomposer.interface.ServiceInterface
Client-server interface

Description
A ServiceInterface object describes the structure and attributes of a client-server interface.

Creation
Create a service interface using the addServiceInterface function.
interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface")

Properties
Dictionary — Dictionary of service interface
dictionary object

Dictionary of service interface, specified as a systemcomposer.interface.Dictionary object.

Model — Parent model
model object

Parent model of service interface, specified as a systemcomposer.arch.Model object.

Name — Service interface name
character vector | string

Service interface name, specified as a character vector or string. This property must be a valid
MATLAB identifier.
Example: "newInterface"
Data Types: char | string

Elements — Elements in interface
array of function element objects

Elements in interface, specified as an array of systemcomposer.interface.FunctionElement
objects.

Description — Service interface description
character vector | string

Service interface description, specified as a character vector or string.
Data Types: char | string

UUID — Universal unique identifier
character vector

 systemcomposer.interface.ServiceInterface

2-303

Universal unique identifier for service interface, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the service interface and through all operations that preserve the UUID.
Data Types: char

Object Functions
addElement Add element
getElement Get object for element
removeElement Remove element
setName Set name for value type, function argument, interface, or element
setDescription Set description for value type or interface
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
getStereotypeProperties Get stereotype property names on element
removeStereotype Remove stereotype from model element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
setProperty Set property value corresponding to stereotype applied to element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Get Function Argument

Create a new model.
model = systemcomposer.createModel("archModel","SoftwareArchitecture",true);

Create a service interface.
interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface");

Create a function element.

element = addElement(interface,"newFunctionElement");

Set a function prototype to add function arguments.

setFunctionPrototype(element,"y=f0(u)")

Get a function argument.

argument = getFunctionArgument(element,"y")

2 Objects

2-304

argument =

 FunctionArgument with properties:

 Interface: [1×1 systemcomposer.interface.ServiceInterface]
 Element: [1×1 systemcomposer.interface.FunctionElement]
 Name: 'y'
 Type: [1×1 systemcomposer.ValueType]
 Dimensions: '1'
 Description: ''
 UUID: '018b4e55-fa8f-4250-ac2b-df72bf620feb'
 ExternalUID: ''

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

 systemcomposer.interface.ServiceInterface

2-305

Term Definition Application More Information
service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

2 Objects

2-306

Term Definition Application More Information
class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 systemcomposer.interface.ServiceInterface

2-307

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

2 Objects

2-308

See Also
setInterface | getInterface | getInterfaceNames | removeInterface |
systemcomposer.interface.FunctionElement | systemcomposer.interface.Dictionary

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

 systemcomposer.interface.ServiceInterface

2-309

systemcomposer.interface.SignalElement
(Removed) Element in signal interface

Note The systemcomposer.interface.SignalElement class has been removed. It has been
replaced with the systemcomposer.interface.DataElement class. For further details, see
“Compatibility Considerations”.

Description
A SignalElement object represents a signal element in a signal interface.

Properties
Interface — Parent interface of element
signal interface object

Parent interface of element, specified as a systemcomposer.interface.SignalInterface
object.

Name — Element name
character vector

Element name, specified as a character vector.
Data Types: char

Dimensions — Dimensions of element
array of positive integers

Dimensions of element, specified as an array of positive integers.
Data Types: integer

Type — Data type of element
character vector

Data type of element, specified as a character vector.
Data Types: char

Complexity — Complexity of element
'real' | 'complex'

Complexity of element, specified as 'real' or 'complex'.
Data Types: char

Units — Units of element
character vector

Units of element, specified as a character vector.

2 Objects

2-310

Data Types: char

Minimum — Minimum value for element
numeric

Minimum value for element, specified as a numeric double.
Data Types: double

Maximum — Maximum value for element
numeric

Maximum value for element, specified as a numeric double.
Data Types: double

Description — Description text for element
character vector

Description text for element, specified as a character vector.
Data Types: char

UUID — Universal unique identifier
character vector

Universal unique identifier for interface element, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the interface element and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element
setDataType Set data type for value type
setDimensions Set dimensions for value type
setUnits Set units for value type
setComplexity Set complexity for value type
setMinimum Set minimum for value type
setMaximum Set maximum for value type
setDescription Set description for value type or interface
destroy Remove model element

Version History
Introduced in R2019a

 systemcomposer.interface.SignalElement

2-311

R2021b: systemcomposer.interface.SignalElement class has been removed
Errors starting in R2021b

The systemcomposer.interface.SignalElement class is removed in R2021b. Use
systemcomposer.interface.DataElement instead.

See Also
systemcomposer.interface.DataInterface | systemcomposer.interface.DataElement |
systemcomposer.interface.Dictionary | systemcomposer.ValueType | addElement |
removeElement | getElement

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-312

systemcomposer.interface.SignalInterface
(Removed) Signal interface

Note The systemcomposer.interface.SignalInterface class has been removed. It has been
replaced with the systemcomposer.interface.DataInterface class. For further details, see
“Compatibility Considerations”.

Description
A SignalInterface object represents the structure of the signal interface at a given port.

Properties
Dictionary — Parent dictionary of interface
interface dictionary object

Parent dictionary of interface, specified as a systemcomposer.interface.Dictionary object.

Name — Interface name
character vector

Interface name, specified as a character vector.
Example: 'NewInterface'
Data Types: char

Elements — Elements in interface
array of interface element objects

Elements in interface, specified as an array of systemcomposer.interface.SignalElement
objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for signal interface, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the signal interface and through all operations that preserve the UUID.
Data Types: char

Model — Parent model
model object

 systemcomposer.interface.SignalInterface

2-313

Parent System Composer model of signal interface, specified as a systemcomposer.arch.Model
object.

Object Functions
addElement Add element
getElement Get object for element
removeElement Remove element
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
getStereotypeProperties Get stereotype property names on element
removeStereotype Remove stereotype from model element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
setProperty Set property value corresponding to stereotype applied to element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Version History
Introduced in R2019a

R2021b: systemcomposer.interface.SignalInterface class has been removed
Errors starting in R2021b

The systemcomposer.interface.SignalInterface class is removed in R2021b. Use
systemcomposer.interface.DataInterface instead.

See Also
systemcomposer.interface.DataInterface | systemcomposer.interface.DataElement |
systemcomposer.interface.Dictionary | systemcomposer.ValueType | addInterface |
getInterface | removeInterface | getInterfaceNames

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-314

systemcomposer.io.ModelBuilder
Model builder for System Composer architecture models

Description
Build System Composer models using a systemcomposer.io.ModelBuilder object. Build System
Composer models with components and their position in an architecture hierarchy, ports and their
mappings to components, connections among components through ports, and interfaces in
architecture models and their mappings to ports.

Creation
builder = systemcomposer.io.ModelBuilder(profile)

Properties
Components — Component information
table

Component information, specified as a table containing this information:

• Hierarchical information of components
• Type of component (for example, Component, Reference Component, Variant Component, or

Adapter)
• Stereotypes applied on a component
• Ability to set property values of a component

Ports — Ports information
table

Ports information, specified as a table. The table contains the information about ports, including their
mappings to components and interfaces, and stereotypes applied on them.

Connections — Connections information
table

Connections information, specified as a table. The table contains information about the connections
between the ports defined in Ports table as well as stereotypes applied on connections.

Interfaces — Interfaces information
table

Interfaces information, specified as a table. The table contains the definitions of various interfaces
and their elements.

Examples

 systemcomposer.io.ModelBuilder

2-315

Import System Composer Architecture Using ModelBuilder Class

Import architecture specifications into System Composer™ using the
systemcomposer.io.ModelBuilder utility class. These architecture specifications can be defined
in an external source, such as an Excel® file.

In System Composer, an architecture is fully defined by four sets of information:

• Components and their position in the architecture hierarchy.
• Ports and their mapping to components.
• Connections among components through ports. In this example, we also import interface data
definitions from an external source.

• Interfaces in architecture models and their mapping to ports.

This example uses the systemcomposer.io.ModelBuilder class to pass all of the above
architecture information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

External Source Files

• Architecture.xlsx — This Excel file contains hierarchical information of the architecture
model. This example maps the external source data to System Composer model elements. This
information maps in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx — This Excel file contains interface data definitions of the model. This
example assumes this mapping between the data definitions in the Excel source file and interfaces
hierarchy in System Composer.

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the ModelBuilder Class

You can instantiate the ModelBuilder class with a profile name.

[stat,fa] = fileattrib(pwd);
if ~fa.UserWrite

2 Objects

2-316

 disp('This script must be run in a writable directory');
 return;
end

Specify the name of the model to build.

modelName = 'scExampleModelBuilder';

Specify the name of the profile.

profile = 'UAVComponent';

Specify the name of the source file to read architecture information.

architectureFileName = 'Architecture.xlsx';

Instantiate the ModelBuilder.

builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions

Reading the information in the external source file DataDefinitions.xlsx to build the interface
data model.

Create MATLAB® tables from the Excel source file.

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2';

Force readtable to start reading from the second row.

definitionContents = readtable('DataDefinitions.xlsx',opts);

The systemcomposer.io.IdService class generates unique ID for a given key.

idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)

In the case of interfaces, add the interface name to the model builder.

 interfaceName = definitionContents.Name{rowItr};

Get the unique interface ID.

getID(container,key) generates or returns (if key is already present) same value for input key
within the container.

 interfaceID = idService.getID('interfaces',interfaceName);

Use builder.addInterface to add the interface to the data dictionary.

 builder.addInterface(interfaceName,interfaceID);
 else

In the case of an element, read the element properties and add the element to the parent interface.

 systemcomposer.io.ModelBuilder

2-317

 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);

The ElementID is unique within a interface. Append E at the start of an ID for uniformity. The
generated ID for an input element is unique within parent interface name as a container.

 elemID = idService.getID(parentInterface,elementName,'E');

Set the data type, dimensions, units, minimum, and maximum properties of the element.

 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);

Make sure that input to builder utility function is always a string.

 if ~ischar(units)
 units = '';
 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};

Use builder.addElementInInterface to add an element with properties in the interface.

 builder.addElementInInterface(elementName,elemID,interfaceID,datatype,dimensions,units,'real',maximum,minimum);
 end
end

Step 3. Build Architecture Specifications

Architecture specifications are created by MATLAB tables from the Excel source file.

excelContents = readtable(architectureFileName);

Iterate over each row in the table.

for rowItr =1:numel(excelContents(:,1))

Read each row of the Excel file and columns.

 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};

Populate the contents of the table.

 if strcmp(class,'component')
 ID = idService.getID('comp',Name);

The Root ID is by default set as zero.

 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp',Parent);
 end

Use builder.addComponent to add a component.

 builder.addComponent(Name,ID,parentID);

2 Objects

2-318

Read the property values.

 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};

Use builder.setComponentProperty to set stereotype and property values.

 builder.setComponentProperty(ID,'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else

In this example, concatenation of the port name and parent component name is used as key to
generate unique IDs for ports.

 portID = idService.getID('port',strcat(Name,Parent));

For ports on root architecture, the compID is assumed as 0.

 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end

Use builder.addPort to add a port.

 builder.addPort(Name,class,portID,compID);

The InterfaceName specifies the name of the interface linked to the port.

 interfaceName = excelContents.InterfaceName{rowItr};

Get the interface ID.

getID will return the same IDs already generated while adding interface in Step 2.

 interfaceID = idService.getID('interfaces',interfaceName);

Use builder.addInterfaceToPort to map interface to port.

 builder.addInterfaceToPort(interfaceID,portID);

Read the ConnectedTo information to build connections between components.

 connectedTo = excelContents.ConnectedTo{rowItr};

ConnectedTo is in the format:

(DestinationComponentName::DestinationPortName)

For this example, consider the current port as source of the connection.

 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');

Get the port ID of the connected port.

In this example, port ID is generated by concatenating the port name and the parent component
name. If the port ID is already generated, the getID function returns the same ID for the input key.

 systemcomposer.io.ModelBuilder

2-319

 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));

Populate the connection table.

 sourcePortID = portID;
 destPortID = connectedPortID;

Use builder.addConnection to add connections.

 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end
 end
end

Step 3. Import Model from Populated Tables with builder.build Function

[model,importReport] = builder.build(modelName);

Clean up artifacts.

cleanUp

2 Objects

2-320

Copyright 2020 The MathWorks, Inc.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.io.ModelBuilder

2-321

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Algorithms
Components Description
addComponent(compName,ID,ParentID) Add component with name and ID as a child of

component with ID as ParentID. In case of root,
ParentID is 0.

setComponentProperty(ID,varargin) Set stereotype on component with ID. Key value
pair of property name and value defined in the
stereotype can be passed as input. In this
example

 builder.setComponentProperty(ID,'StereotypeName',...
'UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain)

ModelName and Manufacturer are properties
under stereotype PartDescriptor.

Ports Description
addPort(portName,direction,ID,compID) Add port with name and ID with direction (either

Input or Output) to component with ID as
compID.

setPropertyOnPort(ID,varargin) Set stereotype on port with ID. Key value pair of
the property name and the value defined in the
stereotype can be passed as input.

2 Objects

2-322

Connections Description
addConnection(connName,ID,sourcePortID
,destPortID)

Add connection with name and ID between ports
with sourcePortID (direction: Output) and
destPortID (direction: Input) defined in the
ports table.

setPropertyOnConnection(ID,varargin) Set stereotype on connection with ID. Key value
pair of the property name and the value defined
in the stereotype can be passed as input.

Interfaces Description
addInterface(interfaceName,ID) Add interface with name and ID to a data

dictionary.
addElementInInterface(elementName,ID,i
nterfaceID,datatype,dimensions,units,c
omplexity,Maximum,Minimum)

Add element with name and ID under an interface
with ID as interfaceID. Data types,
dimensions, units, complexity, and maximum and
minimum are properties of an element. These
properties are specified as strings.

addAnonymousInterface(ID,datatype,dime
nsions,units,complexity,
Maximum,Minimum)

Add anonymous interface with ID and element
properties like data type, dimensions, units,
complexity, maximum, and minimum. Data type of
an owned interface cannot be another interface
name. Owned interfaces do not have elements
like other interfaces.

Interfaces and Ports Description
addInterfaceToPort(interfaceID,portID) Link an interface with ID specified as

InterfaceID to a port with ID specified as
PortID.

Models Description
build(modelName) Build model with model name passed as input.

Logging and Reporting Description
getImportErrorLog Get ErrorLogs generated while importing the

model . Called after the build function.
getImportReport Get a report of the import. Called after the build

function.

Version History
Introduced in R2019b

See Also
importModel | exportModel

 systemcomposer.io.ModelBuilder

2-323

Topics
“Import and Export Architecture Models”

2 Objects

2-324

systemcomposer.parameter.ParameterDefinition
(Not recommended) Parameter definition in System Composer

Note The systemcomposer.parameter.ParameterDefinition object is not recommended. Use
the systemcomposer.arch.Parameter object instead. For more information, see “Compatibility
Considerations”.

Description
A ParameterDefinition object describes a parameter definition in System Composer. Set and get
the properties of a parameter definition to edit and view the instance-specific parameters specified as
model arguments on a referenced model.

Creation
Creating a ParameterDefinition object directly is not supported. A ParameterDefinition
object is returned when you use the getParameterDefinition function.

Properties
Owner — Element that owns definition
architecture object

Element that owns definition, specified as a systemcomposer.arch.Architecture object.

Name — Parameter name
character vector | string

Parameter name, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Example: "AirSpeed"
Data Types: char | string

Type — Parameter data type
character vector | string

Parameter data type, specified as a character vector or string. This property must be a valid MATLAB
data type.
Data Types: char | string

Dimensions — Parameter dimensions
character vector | string

Parameter dimensions, specified as a character vector or string.
Data Types: char | string

 systemcomposer.parameter.ParameterDefinition

2-325

Unit — Parameter units
character vector | string

Parameter units, specified as a character vector or string.
Data Types: char | string

Min — Parameter minimum
character vector | string

Parameter minimum, specified as a character vector or string.
Data Types: char | string

Max — Parameter maximum
character vector | string

Parameter maximum, specified as a character vector or string.
Data Types: char | string

Version History
Introduced in R2022a

R2022b_plus: systemcomposer.parameter.ParameterDefinition object is not
recommended
Not recommended starting in R2022b_plus

The systemcomposer.parameter.ParameterDefinition object is not recommended. Use the
systemcomposer.arch.Parameter object instead.

See Also
getEvaluatedParameterValue | getParameterDefinition | getParameterNames |
getParameterValue | setParameterValue | setUnit

Topics
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

2 Objects

2-326

systemcomposer.profile.Profile
Profile

Description
A Profile object represents a profile for a System Composer model.

Creation
Create a profile using the systemcomposer.profile.Profile.createProfile function.

profile = systemcomposer.profile.Profile.createProfile("profileName");

Note Before you move, copy, or rename a profile to a different directory, you must close the profile in
the Profile Editor or by using the close function. If you rename a profile, follow the example for the
renameProfile function.

Properties
Name — Name of profile
character vector | string

Name of profile, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Data Types: char | string

FriendlyName — Descriptive name of profile
character vector | string

Descriptive name of profile, specified as a character vector or string. This property can contain
spaces and special characters, but no new lines.
Data Types: char | string

Description — Description text for profile
multi-line character vector | multi-line string

Description text for profile, specified as a multi-line character vector or string.
Data Types: char | string

Stereotypes — Stereotypes
array of stereotype objects

Stereotypes defined in profile, specified as an array of systemcomposer.profile.Stereotype
objects.
Data Types: char

 systemcomposer.profile.Profile

2-327

Object Functions
createProfile Create profile
addStereotype Add stereotype to profile
removeStereotype Remove stereotype from profile
getStereotype Find stereotype in profile by name
getDefaultStereotype Get default stereotype for profile
setDefaultStereotype Set default stereotype for profile
find Find profile by name
open Open profile
load Load profile from file
save Save profile as file
close Close profile
closeAll Close all open profiles
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

2 Objects

2-328

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

 systemcomposer.profile.Profile

2-329

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

2 Objects

2-330

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

 systemcomposer.profile.Profile

2-331

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

2 Objects

2-332

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

 systemcomposer.profile.Profile

2-333

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

2 Objects

2-334

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

 systemcomposer.profile.Profile

2-335

Version History
Introduced in R2019a

See Also
editor | systemcomposer.profile.Stereotype | systemcomposer.profile.Property |
loadProfile

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

2 Objects

2-336

systemcomposer.profile.Property
Property in stereotype

Description
A Property object represents properties of a stereotype in a profile for a System Composer model.

Creation
Add a property to a stereotype using the addProperty function.

profile = systemcomposer.profile.Profile.createProfile("profileName");
stereotype = addStereotype(profile,"stereotypeName");
addProperty(stereotype,"propertyName",'DefaultValue="10")

Properties
Name — Name of property
character vector | string

Name of property, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Data Types: char | string

Type — Property data type
character vector | string

Property data type, specified as a character vector or string with a valid data type.
Data Types: char | string

Dimensions — Dimensions of property
positive integer array

Dimensions of property, specified as a positive integer array.
Data Types: double

Min — Minimum value
numeric

Minimum value, specified as a numeric value.
Data Types: double

Max — Maximum value
numeric

Maximum value, specified as a numeric value.

 systemcomposer.profile.Property

2-337

Data Types: double

Units — Property units
character vector | string

Property units, specified as a character vector or string.
Data Types: char | string

Index — Property index
numeric

Property index of the order in which the property is shown on model elements, specified as a numeric
starting from one.
Data Types: double

DefaultValue — Default value of property
string expression | array of strings

Default value of property, specified as a string expression or an array consisting of a string value and
a string unit.
Data Types: string

Stereotype — Owning stereotype
stereotype object

Owning stereotype, specified as a systemcomposer.profile.Stereotype object.

FullyQualifiedName — Qualified name of property
character vector | string

Qualified name of property, specified as a character vector in the form
'<profile>.<stereotype>.<property>'.
Data Types: char

Object Functions
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

2 Objects

2-338

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

 systemcomposer.profile.Property

2-339

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

2 Objects

2-340

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");

 systemcomposer.profile.Property

2-341

addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

2 Objects

2-342

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

 systemcomposer.profile.Property

2-343

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

2 Objects

2-344

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

 systemcomposer.profile.Property

2-345

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

2 Objects

2-346

See Also
systemcomposer.profile.Stereotype | systemcomposer.profile.Profile |
removeProperty | addProperty

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

 systemcomposer.profile.Property

2-347

systemcomposer.profile.Stereotype
Stereotype in profile

Description
A Stereotype object represents stereotypes in a profile for a System Composer model.

Creation
Add a stereotype to a profile using the addStereotype function.

profile = systemcomposer.profile.Profile.createProfile("profileName");
addStereotype(profile,"stereotypeName");

Properties
Name — Name of stereotype
string

Name of stereotype, specified as a string. This property must be a valid MATLAB identifier.
Example: "HardwareComponent"
Data Types: string

Description — Description text for stereotype
string

Description text for stereotype, specified as a string.
Data Types: string

Icon — Icon name for stereotype
string

Icon name for stereotype, specified as one of the following options:

• "default"
• "application"
• "channel"
• "controller"
• "database"
• "devicedriver"
• "memory"
• "network"
• "plant"

2 Objects

2-348

• "sensor"
• "subsystem"
• "transmitter"

This property is only valid for component stereotypes. The element a stereotype applies to is set with
the AppliesTo property.
Data Types: string

Parent — Stereotype from which stereotype inherits properties
stereotype object

Stereotype from which stereotype inherits properties, specified as a
systemcomposer.profile.Stereotype object.

AppliesTo — Element type to which stereotype can be applied
"" (default) | "Component" | "Port" | "Connector" | "Interface" | "Function" |
"Requirement" | "Link"

Element type to which stereotype can be applied, specified as one of these options:

• "" to apply stereotype to all element types
• "Component"
• "Port"
• "Connector"
• "Interface"
• "Function", which is only available for software architectures
• "Requirement", to be used with Requirements Toolbox
• "Link", to be used with Requirements Toolbox

Data Types: string

Abstract — Whether stereotype is abstract
true or 1 | false or 0

Whether stereotype is abstract, specified as a logical. If true, then the stereotype cannot be directly
applied on model elements, but instead serves as a parent for other stereotypes.
Data Types: logical

FullyQualifiedName — Qualified name of stereotype
character vector

Qualified name of stereotype, specified as a character vector in the form
'<profile>.<stereotype>'.
Data Types: char

ComponentHeaderColor — Component header color
1x3 uint32 row vector

Component header color, specified as a 1x3 uint32 row vector in the form [Red Green Blue].

 systemcomposer.profile.Stereotype

2-349

This property is only valid for component stereotypes. The element a stereotype applies to is set with
the AppliesTo property.
Example: [206 232 246]
Data Types: uint32

ConnectorLineColor — Connector line color
1x3 uint32 row vector

Connector line color, specified as a 1x3 uint32 row vector in the form [Red Green Blue].

This property is only valid for connector, port, and interface stereotypes. The element a stereotype
applies to is set with the AppliesTo property
Example: [206 232 246]
Data Types: uint32

ConnectorLineStyle — Connector line style
character vector | string

Connector line style, specified as a character vector or string. Options include:

• "Default"
• "Dot"
• "Dash"
• "Dash Dot"
• "Dash Dot Dot"

This property is only valid for connector, port, and interface stereotypes. The element a stereotype
applies to is set with the AppliesTo property
Data Types: char | string

Profile — Profile of stereotype
profile object

Profile of stereotype from which stereotype inherits properties, specified as a
systemcomposer.profile.Profile object.

Properties — Properties
cell array of character vectors

Properties contained in stereotype and inherited from the stereotype base hierarchy, specified as a
cell array of character vectors.
Data Types: char

OwnedProperties — Owned properties
cell array of character vectors | array of strings | array of property objects

Owned properties contained in stereotype, specified as a cell array of character vectors, an array of
strings, or an array of systemcomposer.profile.Property objects. The owned properties do not
include properties inherited from the stereotype base hierarchy.
Data Types: char | string

2 Objects

2-350

Object Functions
addProperty Define custom property for stereotype
removeProperty Remove property from stereotype
getDefaultElementStereotype Get default stereotype for elements
setDefaultElementStereotype Set default stereotype for elements
find Find stereotype by name
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...
 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

 systemcomposer.profile.Stereotype

2-351

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

2 Objects

2-352

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

 systemcomposer.profile.Stereotype

2-353

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile
profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...

2 Objects

2-354

 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

 systemcomposer.profile.Stereotype

2-355

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

2 Objects

2-356

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

 systemcomposer.profile.Stereotype

2-357

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

2 Objects

2-358

See Also
addStereotype | getStereotype | removeStereotype | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

 systemcomposer.profile.Stereotype

2-359

systemcomposer.query.Constraint
Query constraint

Description
The Constraint object represents all System Composer query constraints.

Object Functions
AnyComponent Create query to select all components in model
IsStereotypeDerivedFrom Create query to select stereotype derived from qualified name
HasStereotype Create query to select architectural elements with stereotype based on

specified subconstraint
HasPort Create query to select architectural elements with port based on

specified subconstraint
HasConnector Create query to select architectural elements with connector based on

specified subconstraint
HasInterface Create query to select architectural elements with interface on port

based on specified subconstraint
HasInterfaceElement Create query to select architectural elements with interface element on

interface based on specified subconstraint
IsInRange Create query to select range of property values
Property Create query to select non-evaluated values for object properties or

stereotype properties for elements
PropertyValue Create query to select property from object or stereotype property and

then evaluate property value

Examples

Find Elements in Model Using Queries

Find components in a System Composer model using queries.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Open the model.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");

Find all the software components in the system.

con1 = HasStereotype(Property("Name") == "SoftwareComponent");
[compPaths,compObjs] = model.find(con1)

compPaths = 5x1 cell
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}

2 Objects

2-360

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

compObjs=1×5 object
 1x5 Component array with properties:

 IsAdapterComponent
 Architecture
 ReferenceName
 Name
 Parent
 Ports
 OwnedPorts
 OwnedArchitecture
 Parameters
 Position
 Model
 SimulinkHandle
 SimulinkModelHandle
 UUID
 ExternalUID

Include reference models in the search.

softwareComps = model.find(con1,IncludeReferenceModels=true)

softwareComps = 9x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor/Detect Door Lock Status'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

Find all the base components in the system.

con2 = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.BaseComponent"));
baseComps = model.find(con2)

baseComps = 18x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/FOB Locator System/Front Receiver' }
 {'KeylessEntryArchitecture/Engine Control System/Start//Stop Button' }
 {'KeylessEntryArchitecture/FOB Locator System/Center Receiver' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/FOB Locator System/Rear Receiver' }

 systemcomposer.query.Constraint

2-361

 {'KeylessEntryArchitecture/Sound System/Dashboard Speaker' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

Find all components using the interface KeyFOBPosition.

con3 = HasPort(HasInterface(Property("Name") == "KeyFOBPosition"));
con3_a = HasPort(Property("InterfaceName") == "KeyFOBPosition");
keyFOBPosComps = model.find(con3)

keyFOBPosComps = 10x1 cell
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Engine Control System' }
 {'KeylessEntryArchitecture/Lighting System' }
 {'KeylessEntryArchitecture/FOB Locator System' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System' }
 {'KeylessEntryArchitecture/Sound System' }

Find all components whose WCET is less than or equal to 5 ms.

con4 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= 5;
model.find(con4)

ans = 1x1 cell array
 {'KeylessEntryArchitecture/Sound System/Sound Controller'}

You can specify units for automatic unit conversion.

con5 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= Value(5,'ms');
query1Comps = model.find(con5)

query1Comps = 3x1 cell
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module'}
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

Find all components whose WCET is greater than 1 ms or that have a cost greater than 10 USD.

con6 = PropertyValue("AutoProfile.SoftwareComponent.WCET") > Value(1,'ms') | PropertyValue("AutoProfile.Base.Cost") > Value(10,'USD');
query2Comps = model.find(con6)

query2Comps = 2x1 cell
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }

Close the model.

model.close

2 Objects

2-362

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 systemcomposer.query.Constraint

2-363

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
find | createView | modifyQuery | runQuery | removeQuery | getQualifiedName

Topics
“Create Architectural Views Programmatically”

2 Objects

2-364

systemcomposer.ValueType
Value type in System Composer

Description
A ValueType object describes a value type in System Composer. A value type can be used as a port
interface or the type for a data element.

Creation
Add a value type to a dictionary using the addValueType function.

model = systemcomposer.createModel("archModel",true);
dictionary = model.InterfaceDictionary;
airspeedType = dictionary.addValueType("AirSpeed");

Properties
Owner — Parent of value type
dictionary object | data element object | architecture port object

Parent of value type, specified as a systemcomposer.interface.Dictionary,
systemcomposer.interface.DataElement, or systemcomposer.arch.ArchitecturePort
object.

Model — Parent model
model object

Parent System Composer model of value type, specified as a systemcomposer.arch.Model object.

Name — Value type name
character vector | string

Value type name, specified as a character vector or string. This property must be a valid MATLAB
identifier.
Example: "AirSpeed"
Data Types: char | string

DataType — Value type data type
character vector | string

Value type data type, specified as a character vector or string. This property must be a valid MATLAB
data type.
Data Types: char | string

Dimensions — Value type dimensions
character vector | string

 systemcomposer.ValueType

2-365

Value type dimensions, specified as a character vector or string.
Data Types: char | string

Units — Value type units
character vector | string

Value type units, specified as a character vector or string.
Data Types: char | string

Complexity — Value type complexity
"real" | "complex" | "auto"

Value type complexity, specified as "real", "complex", or "auto".
Data Types: char | string

Minimum — Value type minimum
character vector | string

Value type minimum, specified as a character vector or string.
Data Types: char | string

Maximum — Value type maximum
character vector | string

Value type maximum, specified as a character vector or string.
Data Types: char | string

Description — Value type description
character vector | string

Value type description, specified as a character vector or string.
Data Types: char | string

UUID — Universal unique identifier
character vector

Universal unique identifier for value type, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, specified as a character vector. The external ID is preserved over the
lifespan of the value type and through all operations that preserve the UUID.
Data Types: char

Object Functions
setName Set name for value type, function argument, interface, or element

2 Objects

2-366

setDataType Set data type for value type
setDimensions Set dimensions for value type
setUnits Set units for value type
setComplexity Set complexity for value type
setMinimum Set minimum for value type
setMaximum Set maximum for value type
setDescription Set description for value type or interface
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
getPropertyValue Get value of architecture property
getEvaluatedPropertyValue Get evaluated value of property from element
getStereotypeProperties Get stereotype property names on element
hasStereotype Find if element has stereotype applied
hasProperty Find if element has property
destroy Remove model element

Examples

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
 Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...

 systemcomposer.ValueType

2-367

 Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...
 {'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},...
 {'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...
 {'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion
component. In the Interface Editor, switch from Dictionary View to Port Interface View.

2 Objects

2-368

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

 systemcomposer.ValueType

2-369

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values in the Profile Editor. Along with the
built-in analysis capabilities of System Composer, stereotypes help you optimize your system for
performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

2 Objects

2-370

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description',...
 'Central unit for all sensors');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');
setProperty(componentPlanning,'GeneralProfile.projectElement.Description',...
 'Planning computer');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description',...
 'Motor and motor controller');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
 {'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

 systemcomposer.ValueType

2-371

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...
 "GeneralProfile.standardConn");

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Motion");

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

2 Objects

2-372

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active
choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,"MotionAlt")

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI/Planning");

Save the model.

model.save

 systemcomposer.ValueType

2-373

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

2 Objects

2-374

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

 systemcomposer.ValueType

2-375

See Also
addValueType | systemcomposer.interface.DataInterface |
systemcomposer.interface.Dictionary | systemcomposer.interface.DataElement

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

2 Objects

2-376

systemcomposer.view.BaseViewComponent
(Removed) View components

Note The systemcomposer.view.BaseViewComponent object has been removed. It has been
replaced with the systemcomposer.view.View and the systemcomposer.view.ElementGroup
objects. For further details, see “Compatibility Considerations”.

Description
The BaseViewComponent object inherits from the systemcomposer.view.ViewElement object.

Properties
Name — Name of view component
character vector

Name of view component, specified as a character vector.
Example: name = get(objBaseViewComponent,'Name')
Example: set(objBaseViewComponent,'Name',name)

Parent — Parent view architecture of component
view architecture object

Parent view architecture of component, specified as a systemcomposer.view.ViewArchitecture
object.
Example: parent = get(objBaseViewComponent,'Parent')

Architecture — View architecture of component
view architecture object

View architecture of component, specified as a systemcomposer.view.ViewArchitecture object.
Example: viewArch = get(objBaseViewComponent,'ViewArchitecture')

Version History
Introduced in R2019b

R2021a: systemcomposer.view.BaseViewComponent object has been removed
Errors starting in R2021a

The systemcomposer.view.BaseViewComponent object is removed in R2021a with the
introduction of new views programmatic interfaces. For more information on how to create and edit a
view using the command line, see “Create Architectural Views Programmatically”.

 systemcomposer.view.BaseViewComponent

2-377

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

2 Objects

2-378

systemcomposer.view.ComponentOccurrence
(Removed) Shadow of component from composition in view

Note The systemcomposer.view.ComponentOccurrence object has been removed. It has been
replaced with the systemcomposer.view.View and the systemcomposer.view.ElementGroup
objects. For further details, see “Compatibility Considerations”.

Description
The ComponentOccurrence object inherits from the
systemcomposer.view.BaseViewComponent object.

Properties
Component — Handle to composition
base component object

Handle to composition component of this occurrence, returned as a
systemcomposer.arch.BaseComponent object.
Example: handle = get(object,'Component')

Version History
Introduced in R2019b

R2021a: systemcomposer.view.ComponentOccurrence object has been removed
Errors starting in R2021a

The systemcomposer.view.ComponentOccurrence object is removed in R2021a with the
introduction of new views programmatic interfaces. For more information on how to create and edit a
view using the command line, see “Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 systemcomposer.view.ComponentOccurrence

2-379

systemcomposer.view.ElementGroup
Architecture view element group

Description
An ElementGroup object is used to manage element groups in architecture views for a System
Composer model.

Creation
Create a view using the createView function and get the Root property of the new
systemcomposer.view.View object. The Root property returns the
systemcomposer.view.ElementGroup that defines the view.

objView = createView(objModel);
objElemGroup = objView.Root

Properties
Name — Name of element group
character vector

Name of element group, specified as a character vector.
Example: 'NewElementGroup'
Data Types: char

UUID — Universal unique identifier
character vector

Universal unique identifier for element group, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

Elements — Elements
array of base component objects

Elements in view, specified as a array of systemcomposer.arch.BaseComponent objects.

SubGroups — Subgroups
array of element group objects

Subgroups under the parent element group, specified as an array of
systemcomposer.view.ElementGroup objects.

2 Objects

2-380

Object Functions
addElement Add component to element group of view
removeElement Remove component from element group of view
createSubGroup Create subgroup in element group of view
getSubGroup Get subgroup in element group of view
deleteSubGroup Delete subgroup in element group of view
destroy Remove model element

Examples

Create Architecture Views in System Composer with Keyless Entry System

Use a keyless entry system to programmatically create architecture views.

1. Import the package with queries.

import systemcomposer.query.*

2. Open the Simulink® project file for the Keyless Entry System.

scKeylessEntrySystem

3. Load the example model into System Composer™.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Example 1: Hardware Component Review Status View

Create a filtered view that selects all hardware components in the architecture model and groups
them using the ReviewStatus property.

1. Construct a query to select all hardware components.

hwCompQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));

2. Use the query to create a view.

model.createView("Hardware Component Review Status",...
 Select=hwCompQuery,...
 GroupBy={'AutoProfile.BaseComponent.ReviewStatus'},...
 IncludeReferenceModels=true,...
 Color="purple");

3. To open the Architecture Views Gallery the Views section, click Architecture Views.

model.openViews

 systemcomposer.view.ElementGroup

2-381

Example 2: FOB Locator System Supplier View

Create a freeform view that manually pulls the components from the FOB Locator System and groups
them using existing and new view components for the suppliers. In this example, you will use element
groups, groupings of components in a view, to programmatically populate a view.

1. Create a view architecture.

fobSupplierView = model.createView("FOB Locator System Supplier Breakdown",...
 Color="lightblue");

2. Add a subgroup called Supplier D. Add the FOB Locator Module to the view element
subgroup.

supplierD = fobSupplierView.Root.createSubGroup("Supplier D");
supplierD.addElement("KeylessEntryArchitecture/FOB Locator System/FOB Locator Module");

3. Create a new subgroup for Supplier A.

supplierA = fobSupplierView.Root.createSubGroup("Supplier A");

4. Add each of the FOB Receivers to view element subgroup.

FOBLocatorSystem = model.lookup("Path","KeylessEntryArchitecture/FOB Locator System");

Find all the components which contain the name "Receiver".

2 Objects

2-382

receiverCompPaths = model.find(...
 contains(Property("Name"),"Receiver"),...
 FOBLocatorSystem.Architecture);

supplierA.addElement(receiverCompPaths)

5. Save the model.

model.save

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

 systemcomposer.view.ElementGroup

2-383

Term Definition Application More Information
element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
openViews | createView | getView | deleteView | systemcomposer.view.View |
getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

2 Objects

2-384

“Display Component Hierarchy and Architecture Hierarchy Using Views”

 systemcomposer.view.ElementGroup

2-385

systemcomposer.view.View
Architecture view

Description
A View object is used to manage architecture views for a System Composer model.

Creation
Create a view using the createView function.

objView = createView(objModel)

Properties
Name — Name of view
string

Name of view, specified as a string.
Example: "NewView"
Data Types: string

Root — Root element group
element group object

Root element group that defines view, specified as a systemcomposer.view.ElementGroup object.

Model — Architecture model
model object

Architecture model where view belongs, specified as a systemcomposer.arch.Model object.

UUID — Universal unique identifier
character vector

Universal unique identifier for view, specified as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

Select — Selection query
constraint object

Selection query associated with view, specified as a systemcomposer.query.Constraint object.

GroupBy — Grouping criteria
string array of properties

2 Objects

2-386

Grouping criteria, specified as a string array of properties in the form
"<profile>.<stereotype>.<property>".
Example:
["AutoProfile.MechanicalComponent.mass","AutoProfile.MechanicalComponent.cost
"]

Color — Color of view
string

Color of view, specified as a string. The color can be the name "blue", "black", or "green", or it
can be an RGB value encoded in a hexadecimal string: "#FF00FF" or "#DDDDDD". An invalid color
results in an error.

Description — Description of view
string

Description of view, specified as a string.
Data Types: string

IncludeReferenceModels — Whether to include referenced models
true or 1 | false or 0

Whether to include referenced models, specified as a logical.
Example: included = get(objView,'IncludeReferenceModels')
Data Types: logical

Object Functions
modifyQuery Modify architecture view query and property groupings
runQuery Re-run architecture view query on model
removeQuery Remove architecture view query
destroy Remove model element

Examples

Create Architecture Views in System Composer with Keyless Entry System

Use a keyless entry system to programmatically create architecture views.

1. Import the package with queries.

import systemcomposer.query.*

2. Open the Simulink® project file for the Keyless Entry System.

scKeylessEntrySystem

3. Load the example model into System Composer™.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

 systemcomposer.view.View

2-387

Example 1: Hardware Component Review Status View

Create a filtered view that selects all hardware components in the architecture model and groups
them using the ReviewStatus property.

1. Construct a query to select all hardware components.

hwCompQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));

2. Use the query to create a view.

model.createView("Hardware Component Review Status",...
 Select=hwCompQuery,...
 GroupBy={'AutoProfile.BaseComponent.ReviewStatus'},...
 IncludeReferenceModels=true,...
 Color="purple");

3. To open the Architecture Views Gallery the Views section, click Architecture Views.

model.openViews

Example 2: FOB Locator System Supplier View

Create a freeform view that manually pulls the components from the FOB Locator System and groups
them using existing and new view components for the suppliers. In this example, you will use element
groups, groupings of components in a view, to programmatically populate a view.

2 Objects

2-388

1. Create a view architecture.

fobSupplierView = model.createView("FOB Locator System Supplier Breakdown",...
 Color="lightblue");

2. Add a subgroup called Supplier D. Add the FOB Locator Module to the view element
subgroup.

supplierD = fobSupplierView.Root.createSubGroup("Supplier D");
supplierD.addElement("KeylessEntryArchitecture/FOB Locator System/FOB Locator Module");

3. Create a new subgroup for Supplier A.

supplierA = fobSupplierView.Root.createSubGroup("Supplier A");

4. Add each of the FOB Receivers to view element subgroup.

FOBLocatorSystem = model.lookup("Path","KeylessEntryArchitecture/FOB Locator System");

Find all the components which contain the name "Receiver".

receiverCompPaths = model.find(...
 contains(Property("Name"),"Receiver"),...
 FOBLocatorSystem.Architecture);

supplierA.addElement(receiverCompPaths)

5. Save the model.

 systemcomposer.view.View

2-389

model.save

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

2 Objects

2-390

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
openViews | createView | getView | deleteView | systemcomposer.view.ElementGroup |
getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”
“Display Component Hierarchy and Architecture Hierarchy Using Views”

 systemcomposer.view.View

2-391

systemcomposer.view.ViewArchitecture
(Removed) Set of view components in architecture view

Note The systemcomposer.view.ViewArchitecture class has been removed. It has been
replaced with the systemcomposer.view.View and the systemcomposer.view.ElementGroup
classes. For further details, see “Compatibility Considerations”.

Description
A ViewArchitecture object describes a set of view components that make up a view. This object
inherits from the systemcomposer.view.ViewElement object.

Properties
Name — Name of architecture
character vector

Name of architecture derived from the parent component or model name to which the architecture
belongs, returned as a character vector.
Example: name = get(objViewArchitecture,'Name')
Data Types: char

IncludeReferenceModels — Control inclusion of referenced models
true or 1 | false or 0

Control inclusion of referenced models, returned as a logical with values 1 (true) or 0 (false).
Example: included = get(objViewArchitecture,'IncludeReferenceModels')
Data Types: logical

Color — Color of view architecture
character vector

Color of view architecture, returned as a character vector as a name 'blue', 'black', or 'green'
or as a RGB value encoded in a hexadecimal string '#FF00FF' or '#DDDDDD'. An invalid color string
results in an error.
Example: color = get(objViewArchitecture,'Color')

Description — Description of view architecture
character vector

Description of view architecture, returned as a character vector.
Example: description = get(objViewArchitecture,'Description')
Example: set(objViewArchitecture,'Description',description)
Data Types: char

2 Objects

2-392

Parent — Component that owns view architecture
base view component object

Component that owns view architecture, returned as a
systemcomposer.view.BaseViewComponent object. For a root view architecture, returns an
empty handle.
Example: parentComponent = get(objViewArchitecture,'Parent')

Components — Array of handles to child components
array of base view component objects

Array of handles to the set of child components of this view architecture, returned as an array of
systemcomposer.view.BaseViewComponent objects.
Example: childComponents = get(objViewArchitecture,'Components')

Methods
addComponent (Removed) Add component to view given path
removeComponent (Removed) Remove component from view
createViewComponent (Removed) Create view component

Version History
Introduced in R2019b

R2021a: systemcomposer.view.ViewArchitecture object has been removed
Errors starting in R2021a

The systemcomposer.view.ViewArchitecture object is removed in R2021a with the
introduction of new views programmatic interfaces. For more information on how to create and edit a
view using the command line, see “Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 systemcomposer.view.ViewArchitecture

2-393

systemcomposer.view.ViewComponent
(Removed) View component within architecture view

Note The systemcomposer.view.ViewComponent class has been removed. It has been replaced
with the systemcomposer.view.View and the systemcomposer.view.ElementGroup classes.
For further details, see “Compatibility Considerations”.

Description
A ViewComponent object is a component that exists only in the view in which it is created. These
components do not exist in the composition. This object inherits from the
systemcomposer.view.BaseViewComponent object.

Version History
Introduced in R2019b

R2021a: systemcomposer.view.ViewComponent object has been removed
Errors starting in R2021a

The systemcomposer.view.ViewComponent object is removed in R2021a with the introduction of
new views programmatic interfaces. For more information on how to create and edit a view using the
command line, see “Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

2 Objects

2-394

systemcomposer.view.ViewElement
(Removed) All view elements

Note The systemcomposer.view.ViewElement object has been removed. It has been replaced
with the systemcomposer.view.View and the systemcomposer.view.ElementGroup objects.
For further details, see “Compatibility Considerations”.

Description
Base class of all view elements.

Properties
ZCIdentifier — Identifier of object
character vector

Identifier of object. This property is used by Simulink Requirements™.
Example: identifier = get(objViewElement,'ZCIdentifier')
Data Types: char

Version History
Introduced in R2009b

R2021a: systemcomposer.view.ViewElement object has been removed
Errors starting in R2021a

The systemcomposer.view.ViewElement object is removed in R2021a with the introduction of
new views programmatic interfaces. For more information on how to create and edit a view using the
command line, see “Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 systemcomposer.view.ViewElement

2-395

Classes

3

systemcomposer.rptgen.finder.AllocationListFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find allocations

Description
The systemcomposer.rptgen.finder.AllocationListFinder class searches for all the
components to and from which a particular component has been allocated in a System Composer
architecture model.

Creation
finder = AllocationListFinder(Container) creates a finder that finds all allocations to and
from the component defined by the ComponentName property.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Allocation set file
string

Allocation set file with the .mldatx extension, specified as a string.
Example: f = AllocationListFinder("AllocationSet.mldatx")
Data Types: string

ComponentName — Component to and from which to find allocations
string

Component to and from which to find allocations, specified as a string of the full path.
Example: f.ComponentName = "mTestModel/Component1"

Attributes:

GetAccess public
SetAccess public

3 Classes

3-2

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find allocations to and from component
next Get next allocation list search result
hasNext Determine if allocation list search result queue is nonempty

Examples

Generate AllocationList Finder Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";
chapter = Chapter("Title","Allocations");
while hasNext(allocationListFinder)
 allocations = next(allocationListFinder);
 sect = Section("Title",allocationListFinder.ComponentName);
 add(sect,allocations);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

 systemcomposer.rptgen.finder.AllocationListFinder class

3-3

See Also
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-4

systemcomposer.rptgen.finder.AllocationListResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for allocations

Description
Allocation list search result object for a component in a System Composer architecture model.

The systemcomposer.rptgen.finder.AllocationListResult class is a handle class.

Creation
result = AllocationListResult creates a search result object for allocations to and from a
specific component found by a systemcomposer.rptgen.finder.AllocationListFinder
object.

Note The find method of the systemcomposer.rptgen.finder.AllocationListFinder class
creates objects of this type for each allocation that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

AllocatedFrom — Components from which specified component has been allocated
array of strings

Components from which specified component has been allocated, returned as an array of strings.
Data Types: string

AllocatedTo — Components to which specified component has been allocated
array of strings

Components to which specified component has been allocated, returned as an array of strings.
Data Types: string

Tag — Tag to associate with result
string

 systemcomposer.rptgen.finder.AllocationListResult class

3-5

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get allocation list reporter

Examples

Generate AllocationList Result Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";
chapter = Chapter("Title",allocationListFinder.ComponentName);
result = find(allocationListFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-6

systemcomposer.rptgen.finder.AllocationSetFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find allocation sets

Description
The systemcomposer.rptgen.finder.AllocationSetFinder class searches for information
about a given allocation set in a System Composer architecture model.

Creation
finder = AllocationSetFinder(Container) creates a finder that finds information about an
allocation set.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Allocation set file
string

Allocation set file with the .mldatx extension, specified as a string.
Example: f = AllocationSetFinder("AllocationSet.mldatx")
Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

 systemcomposer.rptgen.finder.AllocationSetFinder class

3-7

Methods
Public Methods
find Find information about allocation set
hasNext Determine if allocation set search result queue is nonempty
next Get next allocation set search result

Examples

Generate AllocationSet Finder Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
chapter = Chapter("Title","Allocation Set");

while hasNext(allocationSetFinder)
 allocationSets = next(allocationSetFinder);
 sect = Section(strcat("Allocations in ",allocationSets.Name));
 add(sect,allocationSets);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-8

systemcomposer.rptgen.finder.AllocationSetResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for allocation sets

Description
Allocation set search result object in a System Composer architecture model.

The systemcomposer.rptgen.finder.AllocationSetResult class is a handle class.

Creation
result = AllocationSetResult creates a search result object for an allocation set found by a
systemcomposer.rptgen.finder.AllocationSetFinder object.

Note The find method of the systemcomposer.rptgen.finder.AllocationSetFinder class
creates objects of this type for each allocation set that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of allocation set
string

Name of allocation set, returned as a string.
Data Types: string

SourceModel — Source model of allocation set
string

Source model of allocation set, returned as a string.
Data Types: string

TargetModel — Target model of allocation set
string

 systemcomposer.rptgen.finder.AllocationSetResult class

3-9

Target model of allocation set, returned as a string.
Data Types: string

Description — Description of allocation set
string

Description of allocation set, returned as a string.
Data Types: string

Scenarios — Scenarios present in allocation set
structure with fields

Scenarios present in allocation set, returned as a structure with fields:

• Name, returned as a string.
• Allocations, returned as a structure with fields:

• SourceElement, returned as the fully qualified name of the source component allocated from.
• TargetElement, returned as the fully qualified name of the target component allocated to.

• UUID, or universal unique identifier of the scenario, returned a s string.

Data Types: struct

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get allocation set reporter

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Allocation Sets");

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
result = find(allocationSetFinder);
reporter = getReporter(result);

add(rpt,chapter);

3 Classes

3-10

append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.AllocationSetResult class

3-11

systemcomposer.rptgen.finder.ComponentFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find components

Description
The systemcomposer.rptgen.finder.ComponentFinder class searches for information about
all the components in a System Composer architecture model.

Creation
finder = ComponentFinder(Container) creates a finder that finds all components in a model
that meet the Query property.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = ComponentFinder("ArchModel")
Data Types: string

Query — Query to find components
constraint object

Query to find components, specified as a systemcomposer.query.Constraint object.

Attributes:

GetAccess public
SetAccess public

Recurse — Option to recursively search model
true or 1 (default) | false or 0

3 Classes

3-12

Option to recursively search model or to only search a specific layer, specified as 1 (true) to
recursively search or 0 (false) to only search the specific layer.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

IncludeReferenceModels — Option to search for reference architectures
false or 0 (default) | true or 1

Option to search for reference architectures, specified as a logical.

Attributes:

GetAccess public
SetAccess public

Data Types: logical

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about component
hasNext Determine if component search result queue is nonempty
next Get next component search result

Examples

Generate Component Finder Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);

 systemcomposer.rptgen.finder.ComponentFinder class

3-13

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;

chapter = Chapter("Components in mTestModel");

while hasNext(componentFinder)
 componentResult = next(componentFinder);
 sect = Section(componentResult.Name);
 add(sect,componentResult);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-14

systemcomposer.rptgen.finder.ComponentResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for components

Description
Search result object for information about a component in a System Composer architecture model.

The systemcomposer.rptgen.finder.ComponentResult class is a handle class.

Creation
result = ComponentResult creates a search result object for a component found by a
systemcomposer.rptgen.finder.ComponentFinder object.

Note The find method of the systemcomposer.rptgen.finder.ComponentFinder class
creates objects of this type for each component that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of component
string

Name of component, returned as a string.
Data Types: string

Parent — Parent of component
string

Parent of component, returned as a string.
Data Types: string

Children — Children of component
array of component result objects

 systemcomposer.rptgen.finder.ComponentResult class

3-15

Children of component, returned as an array of
systemcomposer.rptgen.finder.ComponentResult objects.

Ports — Ports on component
array of component port objects

Ports on component, returned as an array of systemcomposer.arch.ComponentPort objects.

ReferenceName — Reference model name used by component
string

Reference model name used by component, returned as a string.
Data Types: string

Kind — Kind of AUTOSAR component
string

Kind of AUTOSAR component, returned as a string.
Data Types: string

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get component reporter

Examples

Generate Component Result Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Components");

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;
result = find(componentFinder);

3 Classes

3-16

for i = result
 reporter = getReporter(i);
 reporter.IncludeProperties = false;
 reporter.IncludeSnapshot = false;
 add(chapter,reporter);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.report.Component | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.ComponentResult class

3-17

systemcomposer.rptgen.finder.ConnectorFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find connectors

Description
The systemcomposer.rptgen.finder.ConnectorFinder class searches for information about
all the connectors in a given System Composer architecture model.

Creation
finder = ConnectorFinder(Container) creates a finder that finds all connectors in a
component or on an architecture specified by the Filter property. The component is defined by the
ComponentName property.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = ConnectorFinder("ArchModel")
Data Types: string

Filter — Filter to find connectors
"Architecture" (default) | "Component"

Filter to find connectors, specified as "Component" to find connectors in a component or
"Architecture" to find connectors on an architecture.

Attributes:

GetAccess public
SetAccess public

3 Classes

3-18

Data Types: string

ComponentName — Component to find connectors in
string

Component to find connectors in, specified as a string of the full path.
Example: f.ComponentName = "mTestModel/Component1"

Attributes:

GetAccess public
SetAccess public

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about connector
hasNext Determine if connector search result queue is nonempty
next Get next connector search result

Examples

Generate Connector Finder Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

connectorFinder = ConnectorFinder(model_name);
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components/GPS Module";
connectorFinder.Filter = "Component";
chapter = Chapter("Title","Connectors");

 systemcomposer.rptgen.finder.ConnectorFinder class

3-19

while hasNext(connectorFinder)
 connector = next(connectorFinder);
 sect = Section("Title",connector.Name);
 add(sect,connector);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-20

systemcomposer.rptgen.finder.ConnectorResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for connectors

Description
Search result object for information about a connector in a System Composer architecture model.

The systemcomposer.rptgen.finder.ConnectorResult class is a handle class.

Creation
result = ConnectorResult creates a search result object for a connector found by a
systemcomposer.rptgen.finder.ConnectorFinder object.

Note The find method of the systemcomposer.rptgen.finder.ConnectorFinder class
creates objects of this type for each connector that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of connector
string

Name of connector, returned as a string.
Data Types: string

Parent — Parent component of connector
string

Parent component of connector, returned as a string.
Data Types: string

SourcePort — Source port of connector
string

Source port of connector, returned as a string.

 systemcomposer.rptgen.finder.ConnectorResult class

3-21

Data Types: string

DestinationPort — Destination port of connector
string

Destination port of connector, returned as a string.
Data Types: string

Stereotypes — Stereotypes on connector
array of strings

Stereotypes on connector, returned as an array of strings.
Data Types: string

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get connector reporter

Examples

Generate Connector Result Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

connectorFinder = ConnectorFinder(model_name);
connectorFinder.Filter = "Component";
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components";
chapter = Chapter("Title","Connectors");
result = find(connectorFinder);
add(rpt,chapter);

for r = result

3 Classes

3-22

 reporter = getReporter(r);
 append(rpt,reporter);
end

close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.report.Connector | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.ConnectorResult class

3-23

systemcomposer.rptgen.finder.DictionaryFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find dictionaries

Description
The systemcomposer.rptgen.finder.DictionaryFinder class searches for information about
all the dictionaries in a given System Composer architecture model.

Creation
finder = DictionaryFinder(Container) creates a finder that finds all dictionaries in an
architecture model specified by the Type property to search for model dictionaries or reference
dictionaries.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = DictionaryFinder("ArchModel")
Data Types: string

Type — Filter to find dictionaries
"Model" | "Dictionary"

Filter to find dictionaries, specified as "Model" to find dictionaries in the model or "Dictionary" to
find reference dictionaries.

Attributes:

GetAccess public
SetAccess public

3 Classes

3-24

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about dictionary
hasNext Determine if dictionary search result queue is nonempty
next Get next dictionary search result

Examples

Generate Dictionary Finder Report

Use the DictionaryFinder and DictionaryResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="DictionaryFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Dictionaries in %s Model',model_name)));
add(rpt,TableOfContents);

dictFinder = DictionaryFinder(model_name);

chapter = Chapter("Title","Dictionaries");
while hasNext(dictFinder)
 dict = next(dictFinder);
 sect = Section("Title",dict.Name);
 add(sect,dict);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

 systemcomposer.rptgen.finder.DictionaryFinder class

3-25

See Also
systemcomposer.rptgen.finder.DictionaryResult | find | hasNext | next

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-26

systemcomposer.rptgen.finder.DictionaryResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for dictionaries

Description
Search result object for information about a dictionary in a System Composer architecture model.

The systemcomposer.rptgen.finder.DictionaryResult class is a handle class.

Creation
result = DictionaryResult creates a search result object for a dictionary found by a
systemcomposer.rptgen.finder.DictionaryFinder object.

Note The find method of the systemcomposer.rptgen.finder.DictionaryFinder class
creates objects of this type for each dictionary that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of dictionary
string

Name of dictionary, returned as a string.
Data Types: string

Type — Type of dictionary
"Model" | "Dictionary"

Type of dictionary, returned as "Model" for model dictionaries or "Dictionary" for reference
dictionaries.
Data Types: string

Interfaces — Interfaces in dictionary
array of strings

 systemcomposer.rptgen.finder.DictionaryResult class

3-27

Interfaces in dictionary, returned as an array of strings.
Data Types: string

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.DictionaryFinder | find | hasNext | next

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-28

systemcomposer.rptgen.finder.FunctionFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find function objects

Description
The systemcomposer.rptgen.finder.FunctionFinder class searches for information about all
the functions in a given System Composer software architecture model.

Creation
finder = FunctionFinder(Container) creates a finder that finds all functions in a software
architecture model specified by the Properties property to search for functions with these
properties.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = FunctionFinder("ArchModel")
Data Types: string

ComponentName — Component to find functions in
string

Component to find functions in, specified as a string of the full path.
Example: f.ComponentName = "mTestModel/Component1"

Attributes:

GetAccess public
SetAccess public

 systemcomposer.rptgen.finder.FunctionFinder class

3-29

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about function
hasNext Determine if function search result queue is nonempty
next Get next function search result

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-30

systemcomposer.rptgen.finder.FunctionResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for functions

Description
Search result object for information about a function in a System Composer software architecture
model.

The systemcomposer.rptgen.finder.FunctionResult class is a handle class.

Creation
result = FunctionResult creates a search result object for a function found by a
systemcomposer.rptgen.finder.FunctionFinder object.

Note The find method of the systemcomposer.rptgen.finder.FunctionFinder class creates
objects of this type for each function that it finds. You do not need to create this object yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of function
string

Name of function, returned as a string.
Data Types: string

Component — Component
string

Component where function is defined, specified as a string.
Data Types: string

Parent — Parent architecture of component
string

Parent architecture of component where function is defined, specified as a string.

 systemcomposer.rptgen.finder.FunctionResult class

3-31

Data Types: string

Period — Period of function
numeric | string

Period of function, specified as a numeric value convertible to a string, or a string of valid MATLAB
variables. The Period property of aperiodic functions is editable. Editing the Period property of a
periodic function will result in an error.

ExecutionOrder — Execution order of functions
row vector of numeric values

Execution order of functions, specified as a row vector of numeric values.
Example: [model.Architecture.Functions.ExecutionOrder]
Data Types: uint64

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get function reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.report.Function | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-32

systemcomposer.rptgen.finder.InterfaceFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find interfaces

Description
The systemcomposer.rptgen.finder.InterfaceFinder class searches for information about
all the interfaces in a given System Composer architecture model.

Creation
finder = InterfaceFinder(Container) creates a finder that finds all interfaces in a given
model that meet the Filter property.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = InterfaceFinder("ArchModel")
Data Types: string

SearchIn — Where to find interfaces
"Model" | "Component

Where to find interfaces, specified as "Model" to find interfaces in the model or "Component" to
find all interfaces on the ports of a given component.

Attributes:

GetAccess public
SetAccess public

Data Types: string

 systemcomposer.rptgen.finder.InterfaceFinder class

3-33

Filter — Filter to find interfaces
"All" | "InterfaceName" | "ComponentName"

Filter to find interfaces, specified as "All" to find all interfaces associated with the model,
"InterfaceName" to find a specific interface, or "ComponentName" to find all interfaces on the
ports of a given component.

Attributes:

GetAccess public
SetAccess public

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about interface
hasNext Determine if interface search result queue is nonempty
next Get next interface search result

Examples

Generate Interface Finder Report

Use the InterfaceFinder and InterfaceResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="InterfaceFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Interfaces in %s Model',model_name)));
add(rpt,TableOfContents);

intfFinder = InterfaceFinder(model_name);

chapter = Chapter("Title","Interfaces");
while hasNext(intfFinder)
 interface = next(intfFinder);
 sect = Section("Title",interface.InterfaceName);

3 Classes

3-34

 add(sect,interface);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.InterfaceFinder class

3-35

systemcomposer.rptgen.finder.InterfaceResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for interfaces

Description
Search result object for information about an interface in a System Composer architecture model.

The systemcomposer.rptgen.finder.InterfaceResult class is a handle class.

Creation
result = InterfaceResult creates a search result object for an interface found by a
systemcomposer.rptgen.finder.InterfaceFinder object.

Note The find method of the systemcomposer.rptgen.finder.InterfaceFinder class
creates objects of this type for each interface that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

InterfaceName — Name of interface
string

Name of interface, returned as a string.
Data Types: string

Elements — Elements of interface
structure

Elements of interface, returned as a structure with fields.

For data elements:

• Name, returned as a string.
• Type, returned as a string.

3 Classes

3-36

• Description, returned as a string.
• Complexity, returned as a string.
• Dimensions, returned as a string.
• Maximum, returned as a string.
• Minimum, returned as a string.

For value types:

• Name, returned as a string.
• DataType, returned as a string.
• Description, returned as a string.
• Complexity, returned as a string.
• Dimensions, returned as a string.
• Maximum, returned as a string.
• Minimum, returned as a string.

For service interfaces:

• Name, returned as a string.
• FunctionPrototype, returned as a string.
• FunctionArgument, returned as a structure with fields:

• Name, returned as a string.
• Type, returned as a string.
• Dimensions, returned as a string.
• Description, returned as a string.

Data Types: struct

Ports — Ports information
structure

Ports information, returned as a structure with fields:

• InterfaceName
• PortName
• FullPortName
• Direction

Data Types: struct

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

 systemcomposer.rptgen.finder.InterfaceResult class

3-37

Methods
Public Methods
getReporter Get interface reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.report.Interface | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-38

systemcomposer.rptgen.finder.ProfileFinder class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find profiles

Description
The systemcomposer.rptgen.finder.ProfileFinder class searches for information about
profiles in a given System Composer architecture model.

Creation
finder = ProfileFinder(Container) creates a finder that finds profiles in a given model.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Profile file name
string

Profile file name without the .xml extension, specified as a string.
Example: f = ProfileFinder("TestProfile")
Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about profile

 systemcomposer.rptgen.finder.ProfileFinder class

3-39

hasNext Determine if profile search result queue is nonempty
next Get next profile search result

Examples

Generate Profile Finder Report

Use the ProfileFinder and ProfileResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ProfileFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Profiles in %s Model',model_name)));
add(rpt,TableOfContents);

profileFinder = ProfileFinder("UAVComponent");

chapter = Chapter("Title","Profiles");
while hasNext(profileFinder)
 profile = next(profileFinder);
 sect = Section("Title",profile.Name);
 add(sect,profile);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-40

systemcomposer.rptgen.finder.ProfileResult class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for profiles

Description
Search result object for information about a profile in a System Composer architecture model.

The systemcomposer.rptgen.finder.ProfileResult class is a handle class.

Creation
result = ProfileResult creates a search result object for a profile found by a
systemcomposer.rptgen.finder.ProfileFinder object.

Note The find method of the systemcomposer.rptgen.finder.ProfileFinder class creates
objects of this type for each profile that it finds. You do not need to create this object yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of profile
string

Name of profile, returned as a string.
Data Types: string

Description — Description of profile
string

Description of profile, returned as a string.
Data Types: string

Stereotypes — Stereotypes on profile
array of strings

Stereotypes on profile, returned as an array of strings.
Data Types: string

 systemcomposer.rptgen.finder.ProfileResult class

3-41

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get profile reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.report.Profile | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-42

systemcomposer.rptgen.finder.RequirementLinkFin
der class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find requirement links

Description
The systemcomposer.rptgen.finder.RequirementLinkFinder class searches for information
about requirement links in a requirement link set.

Creation
finder = RequirementLinkFinder(Container) creates a finder that finds requirement links in
a given requirement link set.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Requirement link set file name
string

Requirement link set file name with the .slmx extension, specified as a string.
Example: f = RequirementLinkFinder("System_Reqs.slmx")
Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

 systemcomposer.rptgen.finder.RequirementLinkFinder class

3-43

Methods
Public Methods
find Find information about requirement link
hasNext Determine if requirement link search result queue is nonempty
next Get next requirement link search result

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-44

systemcomposer.rptgen.finder.RequirementLinkRe
sult class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for requirement links

Description
Search result object for information about a requirement link in a requirement link set.

The systemcomposer.rptgen.finder.RequirementLinkResult class is a handle class.

Creation
result = RequirementLinkResult creates a search result object for a requirement link found by
a systemcomposer.rptgen.finder.RequirementLinkFinder object.

Note The find method of the systemcomposer.rptgen.finder.RequirementLinkFinder
class creates objects of this type for each requirement link that it finds. You do not need to create this
object yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Source — Source of link
string

Source of link, returned as a string.
Data Types: string

Type — Type of link
string

Type of link, returned as a string.
Data Types: string

Destination — Destination of link
string

Destination of link, returned as a string.

 systemcomposer.rptgen.finder.RequirementLinkResult class

3-45

Data Types: string

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get requirement links reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-46

systemcomposer.rptgen.finder.RequirementSetFin
der class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find requirements

Description
The systemcomposer.rptgen.finder.RequirementSetFinder class searches for information
about all requirements in a requirement set.

Creation
finder = RequirementSetFinder(Container) creates a finder that finds requirements in a
given requirement set.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Requirement set
string

Requirement set with the .slreqx extension, specified as a string.
Example: f = RequirementSetFinder("System_Reqs.slreqx")
Data Types: string

Depth — Level to find requirements
numeric value

Level to find requirements, specified as a numeric value.

Attributes:

GetAccess public
SetAccess public

Data Types: uint64 | inf

 systemcomposer.rptgen.finder.RequirementSetFinder class

3-47

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about requirement
hasNext Determine if requirement set search result queue is nonempty
next Get next requirement set search result

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-48

systemcomposer.rptgen.finder.RequirementSetRes
ult class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for requirements

Description
Search result object for information about a requirement in a requirement set.

The systemcomposer.rptgen.finder.RequirementSetResult class is a handle class.

Creation
result = ComponentResult creates a search result object for a requirement found by a
systemcomposer.rptgen.finder.RequirementSetFinder object.

Note The find method of the systemcomposer.rptgen.finder.RequirementSetFinder class
creates objects of this type for each requirement that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

ID — ID of requirement
string

ID of requirement, returned as a string.
Data Types: string

Summary — Summary of requirement
string

Summary of requirement, returned as a string.
Data Types: string

Link — Requirement link
string

Requirement link, returned as a string.

 systemcomposer.rptgen.finder.RequirementSetResult class

3-49

Data Types: string

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get requirements reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-50

systemcomposer.rptgen.finder.StereotypeFinder
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find stereotypes

Description
The systemcomposer.rptgen.finder.StereotypeFinder class searches for information about
stereotypes in a profile in a given System Composer architecture model.

Creation
finder = StereotypeFinder(Container) creates a finder that finds stereotypes in a profile in a
given model.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Profile file name
string

Profile file name without the .xml extension, specified as a string.
Example: f = StereotypeFinder("TestProfile")
Data Types: string

StereotypeName — Stereotype name
string

Stereotype name, specified as a string in the form "<profile>.<stereotype>".
Example: f.StereotypeName = "TestProfile.MechanicalComponent"
Attributes:

GetAccess public
SetAccess public

Data Types: string

 systemcomposer.rptgen.finder.StereotypeFinder class

3-51

Properties — Properties of objects to find
cell array of name-value arguments

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about stereotype
hasNext Determine if stereotype search result queue is nonempty
next Get next stereotype search result

Examples

Generate Stereotype Finder Report

Use the StereotypeFinder and StereotypeResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="StereotypeFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Stereotypes in %s Model',model_name)));
add(rpt,TableOfContents);

stereotypeFinder = StereotypeFinder("UAVComponent");
chapter = Chapter("Title","Stereotypes");
while hasNext(stereotypeFinder)
 stereotype = next(stereotypeFinder);
 sect = Section("Title",stereotype.Name);
 add(sect,stereotype);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

3 Classes

3-52

See Also
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.StereotypeFinder class

3-53

systemcomposer.rptgen.finder.StereotypeResult
class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for stereotypes

Description
Search result object for information about a stereotype in a profile in a given System Composer
architecture model.

The systemcomposer.rptgen.finder.StereotypeResult class is a handle class.

Creation
result = StereotypeResult creates a search result object for a stereotype found by a
systemcomposer.rptgen.finder.StereotypeFinder object.

Note The find method of the systemcomposer.rptgen.finder.StereotypeFinder class
creates objects of this type for each stereotype that it finds. You do not need to create this object
yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of stereotype
string

Name of stereotype, specified as a string. This property must be a valid MATLAB identifier.
Example: "HardwareComponent"
Data Types: string

Icon — Icon for stereotype
reporter object

Icon for stereotype, specified as a mlreportgen.dom.Image object.

Parent — Stereotype from which stereotype inherits properties
stereotype object

3 Classes

3-54

Stereotype from which stereotype inherits properties, specified as a
systemcomposer.profile.Stereotype object.

Description — Description text for stereotype
string

Description text for stereotype, specified as a string.
Data Types: string

AppliesTo — Element type to which stereotype can be applied
"" (default) | "Component" | "Port" | "Connector" | "Interface" | "Function" |
"Requirement" | "Link"

Element type to which stereotype can be applied, specified as one of these options:

• "" to apply stereotype to all element types
• "Component"
• "Port"
• "Connector"
• "Interface"
• "Function", which is only available for software architectures
• "Requirement", to be used with Requirements Toolbox
• "Link", to be used with Requirements Toolbox

Data Types: string

Properties — Properties
structure

Properties contained in stereotype and inherited from the stereotype base hierarchy, returned as a
structure with fields:

• Name, returned as a string.
• Type, returned as a string.
• Index, returned as an integer.
• Unit, returned as a string.
• DefaultValue, returned as a string.

Data Types: struct

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

 systemcomposer.rptgen.finder.StereotypeResult class

3-55

Methods
Public Methods
getReporter Get stereotype reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-56

systemcomposer.rptgen.finder.ViewFinder class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Finder

Find views

Description
The systemcomposer.rptgen.finder.ViewFinder class searches for information about all the
views in a given System Composer architecture model.

Creation
finder = ViewFinder(Container) creates a finder that finds all views in a given model.

Note This finder provides two ways to get search results:

• To return the search results as an array, use the find method. Add the results directly to a report
or process the results in a for loop.

• To iterate through the results one at a time, use the hasNext and next methods in a while loop.

Neither option has a performance advantage.

Properties
Container — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Example: f = ViewFinder("ArchModel")
Data Types: string

DiagramType — Type of view
"Default" | "Component Diagram" | "Component Hierarchy"

Type of view, specified as "Default" to display what the view was saved in, "Component Diagram"
for component diagram, and "Component Hierarchy" for component hierarchy.

Attributes:

GetAccess public
SetAccess public

Data Types: string

Properties — Properties of objects to find
cell array of name-value arguments

 systemcomposer.rptgen.finder.ViewFinder class

3-57

Properties of objects to find, specified as a cell array of name-value arguments. The finder returns
only objects that have the specified properties with the specified values.
Example: f.Properties = {'Gain','5'}
Data Types: char

Methods
Public Methods
find Find information about view
hasNext Determine if view search result queue is nonempty
next Get next view search result

Examples

Generate View Finder Report

Use the ViewFinder and ViewResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ViewFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Views in %s Model',model_name)));
add(rpt,TableOfContents);

viewFinder = ViewFinder(model_name);

chapter = Chapter("Title","Views");
while hasNext(viewFinder)
 view = next(viewFinder);
 sect = Section("Title",view.Name);
 add(sect,view);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

3 Classes

3-58

See Also
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | next | getReporter | createTemplate | customizeReporter |
getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.finder.ViewFinder class

3-59

systemcomposer.rptgen.finder.ViewResult class
Package: systemcomposer.rptgen.finder
Superclasses: mlreportgen.finder.Result

Search result for views

Description
Search result object for information about a view in a System Composer architecture model.

The systemcomposer.rptgen.finder.ViewResult class is a handle class.

Creation
result = ViewResult creates a search result object for a view found by a
systemcomposer.rptgen.finder.ViewFinder object.

Note The find method of the systemcomposer.rptgen.finder.ViewFinder class creates
objects of this type for each view that it finds. You do not need to create this object yourself.

Properties
Object — Universal unique identifier of result element
string

Universal unique identifier (UUID) of result element, returned as a string.
Data Types: string

Name — Name of view
string

Name of view, specified as a string.
Example: "NewView"
Data Types: string

Description — Description of view
string

Description of view, specified as a string.
Data Types: string

Select — Selection query
string

Selection query associated with view, specified as a string.
Data Types: string

3 Classes

3-60

GroupBy — Grouping criteria
string array of properties

Grouping criteria, specified as a string array of properties in the form
"<profile>.<stereotype>.<property>".
Example:
["AutoProfile.MechanicalComponent.mass","AutoProfile.MechanicalComponent.cost
"]

Elements — Elements in view
array of component objects

Elements in view, returned as an array of systemcomposer.arch.Component objects.

SubGroups — Subgroups in view
array of element group objects

Subgroups in view, returned as an array of systemcomposer.view.ElementGroup objects.
Data Types: char | string

Snapshot — Snapshot of view
reporter object

Custom snapshot reporter, specified as a mlreportgen.report.FormalImage object.

Color — Color of view
string

Color of view, specified as a string. The color can be the name "blue", "black", or "green", or it
can be an RGB value encoded in a hexadecimal string: "#FF00FF" or "#DDDDDD". An invalid color
results in an error.

Tag — Tag to associate with result
string

Tag to associate with result, specified as a string. This property allows you to attach additional
information to a result. You can set this property to any value that meets your requirements.
Data Types: string

Methods
Public Methods
getReporter Get view reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder | systemcomposer.rptgen.report.View |
find | hasNext | next | getReporter | createTemplate | customizeReporter |
getClassFolder

 systemcomposer.rptgen.finder.ViewResult class

3-61

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-62

systemcomposer.rptgen.report.AllocationList class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Allocation list reporter

Description
Create a reporter that reports on all the components to and from which a particular component has
been allocated in a System Composer architecture model.

The systemcomposer.rptgen.report.AllocationList class is a handle class.

Creation
reporter = AllocationList("Source",result) creates a reporter that reports on allocations
around the component defined by the ComponentName property using a
systemcomposer.rptgen.finder.AllocationListResult object.

Properties
Source — Allocation list result
allocation list result object

Allocation list result, specified as a systemcomposer.rptgen.finder.AllocationListResult
object.

AllocatedFrom — Component from which specified component has been allocated
ordered list object

Component from which specified component has been allocated, specified as an
mlreportgen.dom.OrderedList object.

AllocatedTo — Component to which specified component has been allocated
ordered list object

Component to which specified component has been allocated, specified as an
mlreportgen.dom.OrderedList object..

IncludeAllocatedFrom — Whether to report on allocated-from list
true or 1 | false or 0

Whether to report on allocated-from list, specified as a logical.
Data Types: logical

IncludeAllocatedTo — Whether to report on allocated-to list
true or 1 | false or 0

Whether to report on allocated-to list, specified as a logical.

 systemcomposer.rptgen.report.AllocationList class

3-63

Data Types: logical

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft® Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create allocation list template
customizeReporter Create custom allocation list reporter class
getClassFolder Allocation list class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples

Generate AllocationList Result Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

3 Classes

3-64

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";
chapter = Chapter("Title",allocationListFinder.ComponentName);
result = find(allocationListFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult | find | next | hasNext |
getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.report.AllocationList class

3-65

systemcomposer.rptgen.report.AllocationSet class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Allocation set reporter

Description
Create a reporter that reports on an allocation set file used between System Composer models.

The systemcomposer.rptgen.report.AllocationSet class is a handle class.

Creation
reporter = AllocationSet("Source",result) creates a reporter that reports on an allocation
set using a systemcomposer.rptgen.finder.AllocationSetResult object specified by
"Source".

Properties
Source — Allocation set result
allocation set result object

Allocation set result, specified as a systemcomposer.rptgen.finder.AllocationSetResult
object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

Scenario — Scenarios in allocation set
reporter object

Scenarios in allocation set, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

IncludeSummary — Whether to include summary table
true or 1 | false or 0

Whether to include summary table, specified as a logical.
Data Types: logical

IncludeScenario — Whether to include allocation scenario table
true or 1 | false or 0

Whether to include allocation scenario table, specified as a logical.

3 Classes

3-66

Data Types: logical

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create allocation set template
customizeReporter Create custom allocation set reporter class
getClassFolder Allocation set class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples

Generate AllocationSet Result Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

 systemcomposer.rptgen.report.AllocationSet class

3-67

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Allocation Sets");

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
result = find(allocationSetFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult | find | hasNext | next |
getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-68

systemcomposer.rptgen.report.Component class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Component reporter

Description
Create a reporter that reports on all components in a System Composer architecture model.

The systemcomposer.rptgen.report.Component class is a handle class.

Creation
reporter = Component("Source",result) creates a reporter that reports on a component
using a systemcomposer.rptgen.finder.ComponentResult object.

Properties
Source — Component result
component result object

Component result, specified as a systemcomposer.rptgen.finder.ComponentResult object.

Snapshot — Custom snapshot reporter
reporter object

Custom snapshot reporter, specified as a reporter object. The default value is the
slreportgen.report.Diagram reporter.

Properties — Custom properties reporter
reporter object

Custom properties reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

Stereotypes — Custom properties reporter for stereotypes on component
reporter object

Custom properties reporter for stereotypes on component, specified as a reporter object. The default
value is the mlreportgen.report.BaseTable reporter.

Ports — Custom properties reporter for ports on component
reporter object

Custom properties reporter for ports on component, specified as a reporter object. The default value
is the mlreportgen.report.BaseTable reporter.

Functions — Custom properties reporter for functions on software component
reporter object

 systemcomposer.rptgen.report.Component class

3-69

Custom properties reporter for functions on software component, specified as a reporter object. The
default value is the mlreportgen.report.BaseTable reporter.

Children — Child components
array of component reporter objects

Child components, specified as an array of systemcomposer.rptgen.report.Component objects.
Data Types: string

IncludeSnapshot — Whether to include snapshot table
true or 1 | false or 0

Whether to include snapshot table, specified as a logical.
Data Types: logical

IncludeProperties — Whether to include properties table
true or 1 | false or 0

Whether to include properties table, specified as a logical.
Data Types: logical

IncludeStereotypes — Whether to include stereotypes table
true or 1 | false or 0

Whether to include stereotypes table, specified as a logical.
Data Types: logical

IncludePorts — Whether to include ports table
true or 1 | false or 0

Whether to include ports table, specified as a logical.
Data Types: logical

IncludeFunctions — Whether to include functions table
true or 1 | false or 0

Whether to include functions table, specified as a logical.
Data Types: logical

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

3 Classes

3-70

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create component template
customizeReporter Create custom component reporter class
getClassFolder Component class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples

Generate Component Result Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Components");

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;
result = find(componentFinder);

 systemcomposer.rptgen.report.Component class

3-71

for i = result
 reporter = getReporter(i);
 reporter.IncludeProperties = false;
 reporter.IncludeSnapshot = false;
 add(chapter,reporter);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-72

systemcomposer.rptgen.report.Connector class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Connector reporter

Description
Create a reporter that reports on all connectors in a System Composer architecture model.

The systemcomposer.rptgen.report.Connector class is a handle class.

Creation
reporter = Connector("Source",result) creates a reporter that reports on a connector using
a systemcomposer.rptgen.finder.ConnectorResult object.

Properties
Source — Connector result
connector result object

Connector result, specified as a systemcomposer.rptgen.finder.ConnectorResult object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

 systemcomposer.rptgen.report.Connector class

3-73

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create connector template
customizeReporter Create custom connector reporter class
getClassFolder Connector class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Examples

Generate Connector Result Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

connectorFinder = ConnectorFinder(model_name);
connectorFinder.Filter = "Component";
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components";
chapter = Chapter("Title","Connectors");
result = find(connectorFinder);
add(rpt,chapter);

for r = result
 reporter = getReporter(r);
 append(rpt,reporter);
end

3 Classes

3-74

close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.report.Connector class

3-75

systemcomposer.rptgen.report.DependencyGraph
class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Dependency graph reporter

Description
Create a reporter that reports on a dependency graph for a System Composer architecture model
artifact.

The systemcomposer.rptgen.report.DependencyGraph class is a handle class.

Creation
reporter = DependencyGraph("Source",fullpath) creates a reporter that reports on a
dependency graph using the full path of the artifact.

Properties
Source — Full path to artifact
string

Full path to artifact, specified as a string.
Data Types: string

Layout — Alignment of dependency graph
"Vertical" (default) | "Horizontal"

Alignment of dependency graph, specified as "Vertical" for a vertically aligned dependency graph
or "Horizontal" for a horizontally aligned dependency graph.
Data Types: string

Snapshot — Custom snapshot reporter
reporter object

Custom snapshot reporter, specified as a reporter object. The default value is the
slreportgen.report.Diagram reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

3 Classes

3-76

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create dependency graph template
customizeReporter Create custom dependency graph reporter class
getClassFolder Dependency graph class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.report.DependencyGraph class

3-77

systemcomposer.rptgen.report.Function class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Function reporter

Description
Create a reporter that reports on all functions in a System Composer software architecture model.

The systemcomposer.rptgen.report.Function class is a handle class.

Creation
reporter = Function("Source",result) creates a reporter that reports on a function using a
systemcomposer.rptgen.finder.FunctionResult object.

Properties
Source — Function result
function result object

Function result, specified as a systemcomposer.rptgen.finder.FunctionResult object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

3 Classes

3-78

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create function template
customizeReporter Create custom function reporter class
getClassFolder Function class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.report.Function class

3-79

systemcomposer.rptgen.report.Interface class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Interface reporter

Description
Create a reporter that reports on interfaces in a System Composer architecture model.

The systemcomposer.rptgen.report.Interface class is a handle class.

Creation
reporter = Interface("Source",result) creates a reporter that reports on interfaces in a
model using a systemcomposer.rptgen.finder.InterfaceResult object.

Properties
Source — Interface result
interface result object

Interface result, specified as a systemcomposer.rptgen.finder.InterfaceResult object.

Elements — Elements in interface of component
reporter object

Elements in interface of component, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

PortsUsage — Ports on which interface is present
reporter object

Ports on which interface is present, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

IncludeElements — Whether to report on elements table
true or 1 | false or 0

Whether to report on allocated from list, specified as a logical.
Data Types: logical

IncludePortsUsage — Whether to report on ports usage table
true or 1 | false or 0

Whether to report on allocated to list, specified as a logical.
Data Types: logical

3 Classes

3-80

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create interface template
customizeReporter Create custom interface reporter class
getClassFolder Interface class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

 systemcomposer.rptgen.report.Interface class

3-81

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-82

systemcomposer.rptgen.report.Profile class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Profile reporter

Description
Create a reporter that reports on profile files that can be used with a System Composer architecture
model.

The systemcomposer.rptgen.report.Profile class is a handle class.

Creation
reporter = Profile("Source",result) creates a reporter that reports on profiles in a model
using a systemcomposer.rptgen.finder.ProfileResult object.

Properties
Source — Profile result
profile result object

Profile result, specified as a systemcomposer.rptgen.finder.ProfileResult object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

 systemcomposer.rptgen.report.Profile class

3-83

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create profile template
customizeReporter Create custom profile reporter class
getClassFolder Profile class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-84

systemcomposer.rptgen.report.RequirementLink
class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Requirement link reporter

Description
Create a reporter that reports on all requirement links in requirement link set.

The systemcomposer.rptgen.report.RequirementLink class is a handle class.

Creation
reporter = RequirementLink("Source",result) creates a reporter that reports on a
requirement link set using a systemcomposer.rptgen.finder.RequirementLinkResult object.

Properties
Source — Requirement link result
requirement link result object

Requirement link result, specified as a
systemcomposer.rptgen.finder.RequirementLinkResult object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

 systemcomposer.rptgen.report.RequirementLink class

3-85

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create requirement link template
customizeReporter Create custom requirement link reporter class
getClassFolder Requirement link class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult | find | hasNext | next |
getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-86

systemcomposer.rptgen.report.RequirementSet
class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Requirement set reporter

Description
Create a reporter that reports on all requirements in a requirement set.

The systemcomposer.rptgen.report.RequirementSet class is a handle class.

Creation
reporter = RequirementSet("Source",result) creates a reporter that reports on a
requirement set using a systemcomposer.rptgen.finder.RequirementSetResult object.

Properties
Source — Requirement set result
requirement set result object

Requirement set result, specified as a
systemcomposer.rptgen.finder.RequirementSetResult object.

Properties — Custom properties reporter
reporter object

Custom properties reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

 systemcomposer.rptgen.report.RequirementSet class

3-87

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create requirement set template
customizeReporter Create custom requirement set reporter class
getClassFolder Requirement set class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult | find | hasNext | next |
getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-88

systemcomposer.rptgen.report.SequenceDiagram
class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Sequence diagram reporter

Description
Create a reporter that reports on a sequence diagram in a System Composer architecture model.

The systemcomposer.rptgen.report.SequenceDiagram class is a handle class.

Creation
reporter = SequenceDiagram("Name",name,"ModelName",model) creates a reporter that
reports on a sequence diagram using the name and model name.

Properties
Name — Name of sequence diagram
string

Name of sequence diagram, specified as a string.
Data Types: string

ModelName — Architecture model file name
string

Architecture model file name without the .slx extension, specified as a string.
Data Types: string

Snapshot — Custom snapshot reporter
reporter object

Custom snapshot reporter, specified as a reporter object. The default value is the
slreportgen.report.Diagram reporter.

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

 systemcomposer.rptgen.report.SequenceDiagram class

3-89

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create sequence diagram template
customizeReporter Create custom sequence diagram reporter class
getClassFolder Sequence diagram class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-90

systemcomposer.rptgen.report.Stereotype class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

Stereotype reporter

Description
Create a reporter that reports on all stereotypes in a profile that can be used with a System
Composer architecture model.

The systemcomposer.rptgen.report.Stereotype class is a handle class.

Creation
reporter = Stereotype("Source",result) creates a reporter that reports on a stereotype
using a systemcomposer.rptgen.finder.StereotypeResult object.

Properties
Source — Stereotype result
stereotype result object

Stereotype result, specified as a systemcomposer.rptgen.finder.StereotypeResult object.

Summary — Custom summary reporter
reporter object

Custom summary reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

Properties — Custom properties reporter
reporter object

Custom properties reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

IncludeSummary — Whether to include summary table
true or 1 | false or 0

Whether to include summary table, specified as a logical.
Data Types: logical

IncludeProperties — Whether to include properties table
true or 1 | false or 0

Whether to include properties table, specified as a logical.
Data Types: logical

 systemcomposer.rptgen.report.Stereotype class

3-91

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create stereotype template
customizeReporter Create custom stereotype reporter class
getClassFolder Stereotype class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult | find | hasNext | next | getReporter
| createTemplate | customizeReporter | getClassFolder

3 Classes

3-92

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 systemcomposer.rptgen.report.Stereotype class

3-93

systemcomposer.rptgen.report.View class
Package: systemcomposer.rptgen.report
Superclasses: slreportgen.report.Reporter

View reporter

Description
Create a reporter that reports on all views in a System Composer architecture model.

The systemcomposer.rptgen.report.View class is a handle class.

Creation
reporter = View("Source",result) creates a reporter that reports on a view using a
systemcomposer.rptgen.finder.ViewResult object.

Properties
Source — View result
view result object

View result, specified as a systemcomposer.rptgen.finder.ViewResult object.

Snapshot — Custom snapshot reporter
reporter object

Custom snapshot reporter, specified as a reporter object. The default value is the
slreportgen.report.Diagram reporter.

Elements — Elements present in view
reporter object

Elements present in view, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

Properties — Custom properties reporter
reporter object

Custom properties reporter, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

SubGroups — Subgroups of view
reporter object

Subgroups of view, specified as a reporter object. The default value is the
mlreportgen.report.BaseTable reporter.

IncludeElements — Whether to include elements table
true or 1 | false or 0

3 Classes

3-94

Whether to include elements table, specified as a logical.
Data Types: logical

IncludeProperties — Whether to include properties table
true or 1 | false or 0

Whether to include properties table, specified as a logical.
Data Types: logical

IncludeSubGroups — Whether to include subgroups table
true or 1 | false or 0

Whether to include subgroups table, specified as a logical.
Data Types: logical

TemplateSrc — Source of template for this reporter
[] (default) | character vector | string scalar | reporter or report | DOM document or document part

Source of the template for this reporter, specified as one of these options:

• Character vector or string scalar that specifies the path of the file that contains the template for
this reporter

• Reporter or report whose template is used for this reporter or whose template library contains the
template for this reporter

• DOM document or document part whose template is used for this reporter or whose template
library contains the template for this reporter

The specified template must be the same type as the report to which this reporter is appended. For
example, for a Microsoft Word report, TemplateSrc must be a Word reporter template. If the
TemplateSrc property is empty, this reporter uses the default reporter template for the output type
of the report.

TemplateName — Name of template for this reporter
character vector | string scalar

Name of template for this reporter, specified as a character vector or string scalar. The template for
this reporter must be in the template library of the template source (TemplateSrc) for this reporter.

LinkTarget — Hyperlink target for this reporter
[] (default) | character vector | string scalar | mlreportgen.dom.LinkTarget object

Hyperlink target for this reporter, specified as a character vector or string scalar that specifies the
link target ID or as an mlreportgen.dom.LinkTarget object. A character vector or string scalar
value is converted to a LinkTarget object. The link target immediately precedes the content of this
reporter in the output report.

Methods
Public Methods
createTemplate Create view template
customizeReporter Create custom view reporter class

 systemcomposer.rptgen.report.View class

3-95

getClassFolder View class definition file location

Inherited Methods

copy Create copy of a Simulink reporter object and
make deep copies of certain property values

getImpl Get implementation of reporter

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | find | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

3 Classes

3-96

Functions

4

addChoice
Package: systemcomposer.arch

Add variant choices to variant component

Syntax
compList = addChoice(variantComponent,choices)
compList = addChoice(variantComponent,choices,labels)

Description
compList = addChoice(variantComponent,choices) creates variant choices specified in
choices in the specified variant component and returns their handles.

compList = addChoice(variantComponent,choices,labels) creates variant choices
specified in choices with labels labels in the specified variant component and returns their
handles.

Examples

Add Variant Choices

Create a model, get the root architecture, create one variant component, and add two choices for the
variant component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

choices — Variant choice names
cell array of character vectors | array of strings

Variant choice names, specified as a cell array of character vectors or an array of strings. The length
of choices must be the same as labels.
Data Types: char | string

labels — Variant choice labels
cell array of character vectors | array of strings

4 Functions

4-2

Variant choice labels, specified as a cell array of character vectors or an array of strings. The length
of labels must be the same as choices.
Data Types: char | string

Output Arguments
compList — Created components
array of components

Created components, returned as an array of systemcomposer.arch.Component objects. This
array is the same size as choices and labels.

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
getActiveChoice | getChoices | makeVariant | addVariantComponent | Variant Component

Topics
“Create Variants”

 addChoice

4-3

addComponent
Package: systemcomposer.arch

Add components to architecture

Syntax
components = addComponent(arch,compNames)
components = addComponent(arch,compNames,stereotypes)

Description
components = addComponent(arch,compNames) adds a set of components specified by the
names compNames.

To remove a component, use the destroy function.

components = addComponent(arch,compNames,stereotypes) applies stereotypes specified in
stereotypes to the new components.

Examples

Create Model with Two Components

Create a model, get the root architecture, and create components. Arrange the layout to view both
components.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
names = ["Component1","Component2"];
comps = addComponent(arch,names);
Simulink.BlockDiagram.arrangeSystem("archModel");

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

compNames — Names of components
cell array of character vectors | array of strings

Name of components, specified as a cell array of character vectors or an array of strings. The length
of compNames must be the same as stereotypes.
Data Types: char | string

stereotypes — Stereotypes to apply to components
cell array of character vectors | array of strings

4 Functions

4-4

Stereotypes to apply to components, specified as a cell array of character vectors or an array of
strings. Each element is the qualified stereotype name for the corresponding component in the form
"<profile>.<stereotype>".
Data Types: char | string

Output Arguments
components — Created components
array of component objects

Created components, returned as an array of systemcomposer.arch.Component objects.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 addComponent

4-5

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-6

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
addPort | connect | Component

Topics
“Components”

 addComponent

4-7

addComponent
Package: systemcomposer.view

(Removed) Add component to view given path

Note The addComponent function has been removed. You can create a view using the createView
function and add a component using the addElement function. For further details, see “Compatibility
Considerations”.

Syntax
viewComp = addComponent(object,compPath)

Description
viewComp = addComponent(object,compPath) adds the component with the specified path.

addComponent is a method for the class systemcomposer.view.ViewArchitecture.

Examples

Add Component to View

Create a model, extract its architecture, and add three components.

model = systemcomposer.createModel('mobileRobotAPI');
arch = model.Architecture;
components = addComponent(arch,{'Sensor','Planning','Motion'});

Create a view architecture, a view component, and add a component. Open the Architecture Views
Gallery to view the component.

view = model.createViewArchitecture('NewView');
viewComp = fobSupplierView.createViewComponent('ViewComp');
viewComp.Architecture.addComponent('mobileRobotAPI/Motion');
openViews(model);

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

compPath — Path to component
character vector

Path to component, including the name of the top-level model, specified as a character vector.

4 Functions

4-8

Example: 'mobileRobotAPI/Motion'
Data Types: char

Output Arguments
viewComp — View component
view component object

View component, returned as a systemcomposer.view.ViewComponent object.

Version History
Introduced in R2019b

R2021a: addComponent function has been removed
Errors starting in R2021a

The addComponent function is removed in R2021a with the introduction of new views APIs. For more
information on how to create and edit a view programmatically, see “Create Architectural Views
Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 addComponent

4-9

addElement
Package: systemcomposer.interface

Add element

Syntax
element = addElement(interface,name)
element = addElement(interface,name,Name,Value)

Description
element = addElement(interface,name) adds an element to an interface with default
properties.

To remove an element from an interface, use the removeElement function.

element = addElement(interface,name,Name,Value) sets the properties of the element
using name-value arguments.

Examples

Add Data Interface and Data Element

Create a new model newModel. Add a data interface newInterface to the interface dictionary of the
model. Then, add a data element newElement with data type double.

arch = systemcomposer.createModel("newModel",true);
interface = addInterface(arch.InterfaceDictionary,"newInterface");
element = addElement(interface,"newElement",DataType="double")

element =

 DataElement with properties:

 Interface: [1×1 systemcomposer.interface.DataInterface]
 Name: 'newElement'
 Type: [1×1 systemcomposer.ValueType]
 UUID: '2d267175-33c2-43a9-be41-a1be2774a3cf'
 ExternalUID: ''

Add Physical Interface and Physical Element

Create a new model named 'newModel'. Add a physical interface 'newInterface' to the interface
dictionary of the model. Then, add a physical element 'newElement' with type
'electrical.electrical'. Change the physical domain type to 'electrical.six_phase'.
arch = systemcomposer.createModel('newModel',true);
interface = addPhysicalInterface(arch.InterfaceDictionary,'newInterface');

4 Functions

4-10

element = addElement(interface,'newElement','Type','electrical.electrical');
element.Type = 'electrical.six_phase';
element

element =

 PhysicalElement with properties:

 Name: 'newElement'
 Type: [1×1 systemcomposer.interface.PhysicalDomain]
 Interface: [1×1 systemcomposer.interface.PhysicalInterface]
 UUID: '32e4c51e-e567-42f1-b44a-2d2fcdbb5c25'
 ExternalUID: ''

Input Arguments
interface — Interface
data interface object | physical interface object | service interface object

Interface, specified as a systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

name — Element name
character vector | string

Element name, specified as a character vector or string. An element name must be a valid MATLAB
variable name.
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
addElement(interface,"newElement",DataType="double",Dimensions="2",Units="m/
s",Complexity="complex",Minimum="0",Maximum="100",Description="Maintain
altitude")

DataType — Data type
character vector | string

Data type, specified as a character vector or string for a valid MATLAB data type. The default value is
double.
Example: addElement(interface,"newElement",DataType="double")
Data Types: char | string

Dimensions — Dimensions
character vector | string

Dimensions, specified as a character vector or string. The default value is 1.

 addElement

4-11

Example: addElement(interface,"newElement",Dimensions="2")
Data Types: char | string

Units — Units
character vector | string

Units, specified as a character vector or string.
Example: addElement(interface,"newElement",Units="m/s")
Data Types: char | string

Complexity — Complexity
character vector | string

Complexity, specified as a character vector or string. The default value is real. Other possible values
are complex and auto.
Example: addElement(interface,"newElement",Complexity="complex")
Data Types: char | string

Minimum — Minimum
character vector | string

Minimum, specified as a character vector or string.
Example: addElement(interface,"newElement",Minimum="0")
Data Types: char | string

Maximum — Maximum
character vector | string

Maximum, specified as a character vector or string.
Example: addElement(interface,"newElement",Maximum="100")
Data Types: char | string

Description — Description
character vector | string

Description, specified as a character vector or string.
Example: addElement(interface,"newElement",Description="Maintain altitude")
Data Types: char | string

Type — Physical domain
character vector | string

Physical domain of physical element, specified as a character vector or string of a partial physical
domain name. For a list of valid physical domain names, see “Domain-Specific Line Styles”
(Simscape).
Example: addElement(interface,"newElement",Type="electrical.six_phase")
Data Types: char | string

4 Functions

4-12

Output Arguments
element — Element
data element object | physical element object | function element object

Element, returned as a systemcomposer.interface.DataElement,
systemcomposer.interface.PhysicalElement, or
systemcomposer.interface.FunctionElement object.

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 addElement

4-13

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

4 Functions

4-14

See Also
removeElement | getElement | getInterfaceNames | getInterface | setType |
addInterface | addValueType | addPhysicalInterface | addServiceInterface

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 addElement

4-15

addElement
Package: systemcomposer.view

Add component to element group of view

Syntax
addElement(elementGroup,component)

Description
addElement(elementGroup,component) adds the component component to the element group
elementGroup of an architecture view.

Note This function cannot be used when a selection query or grouping is defined on the view. To
remove the query, run removeQuery.

Examples

Add Elements to View

Open the keyless entry system example and create a view, newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see newView.

model.openViews

Add an element to the view by path.

view.Root.addElement("KeylessEntryArchitecture/Lighting System/Headlights")

Add an element to the view by object.

component = model.lookup(Path="KeylessEntryArchitecture/Lighting System/Cabin Lights");
view.Root.addElement(component)

Input Arguments
elementGroup — Element group
element group object

Element group for view, specified as a systemcomposer.view.ElementGroup object.

4 Functions

4-16

component — Component
component object | variant component object | array of component objects | array of variant
component objects | path to component | cell array of component paths

Component to remove from view, specified as a systemcomposer.arch.Component object, a
systemcomposer.arch.VariantComponent object, an array of
systemcomposer.arch.Component objects, an array of
systemcomposer.arch.VariantComponent objects, the path to a component, or a cell array of
component paths.
Example: "KeylessEntryArchitecture/Lighting System/Headlights"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 addElement

4-17

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
lookup | openViews | createView | getView | deleteView |
systemcomposer.view.ElementGroup | systemcomposer.view.View | removeElement |
getSubGroup | deleteSubGroup | createSubGroup | getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-18

addInterface
Package: systemcomposer.interface

Create named data interface in interface dictionary

Syntax
interface = addInterface(dictionary,name)
interface = addInterface(dictionary,name,'SimulinkBus',busObject)

Description
interface = addInterface(dictionary,name) adds the data interface specified by name name
to the interface dictionary dictionary.

To remove an interface, use the removeInterface function.

interface = addInterface(dictionary,name,'SimulinkBus',busObject) constructs a
data interface that mirrors an existing Simulink bus object.

Examples

Add Data Interface

Create a data dictionary, then add a data interface newInterface.

dictionary = systemcomposer.createDictionary("new_dictionary.sldd");
interface = addInterface(dictionary,"newInterface")

Create a new model and link the data dictionary. Then, open the Interface Editor to view the new
interface.

arch = systemcomposer.createModel("newModel",true);
linkDictionary(arch,"new_dictionary.sldd");

Add Simulink Bus Mirrored Data Interface

Create a dictionary, create a Simulink bus object, populate the bus object with two elements, and add
the named data interface that mirrors the Simulink bus object to the dictionary.
dictionary = systemcomposer.createDictionary("new_dictionary.sldd");

busObj = Simulink.Bus;
elems(1) = Simulink.BusElement;
elems(1).Name = 'element_1';
elems(2) = Simulink.BusElement;
elems(2).Name = 'element_2';
busObj.Elements = elems;

interface = addInterface(dictionary,"newInterface",SimulinkBus=busObj);

 addInterface

4-19

Create a new model, link the data dictionary, and open the Interface Editor.

arch = systemcomposer.createModel("newModel",true);
linkDictionary(arch,"new_dictionary.sldd");

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of new data interface
character vector | string

Name of new data interface, specified as a character vector or string. This name must be a valid
MATLAB identifier.
Example: "newInterface"
Data Types: char | string

busObject — Simulink bus object that new data interface mirrors
bus object

Simulink bus object that new data interface mirrors, specified as a Simulink bus object.

Output Arguments
interface — New data interface
data interface object

New data interface, returned as a systemcomposer.interface.DataInterface object.

4 Functions

4-20

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 addInterface

4-21

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
addElement | createDictionary | getInterface | getInterfaceNames | removeInterface |
linkDictionary | Adapter | addPhysicalInterface | addValueType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-22

addPhysicalInterface
Package: systemcomposer.interface

Create named physical interface in interface dictionary

Syntax
interface = addPhysicalInterface(dictionary,name)

Description
interface = addPhysicalInterface(dictionary,name) adds the physical interface specified
by the name name to the interface dictionary dictionary.

To remove an interface, use the removeInterface function.

Examples

Add Physical Interface

Create a data dictionary, then add a physical interface newInterface.

dictionary = systemcomposer.createDictionary("new_dictionary.sldd");
interface = addPhysicalInterface(dictionary,"newInterface")

Create a new model and link the data dictionary. Then, open the Interface Editor to view the new
interface.

arch = systemcomposer.createModel("newModel",true);
linkDictionary(arch,"new_dictionary.sldd");

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of new physical interface
character vector | string

Name of new physical interface, specified as a character vector or string. This name must be a valid
MATLAB identifier.
Example: "newInterface"

 addPhysicalInterface

4-23

Data Types: char | string

Output Arguments
interface — New physical interface
physical interface object

New physical interface, returned as a systemcomposer.interface.PhysicalInterface object.

More About
Definitions

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

4 Functions

4-24

Term Definition Application More Information
physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 addPhysicalInterface

4-25

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

4 Functions

4-26

See Also
addElement | createDictionary | addInterface | getInterface | getInterfaceNames |
removeInterface | linkDictionary | Adapter | addValueType

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 addPhysicalInterface

4-27

addFunction
Package: systemcomposer.arch

Add functions to architecture of software component

Syntax
functions = addFunction(arch,functionNames)

Description
functions = addFunction(arch,functionNames) adds a set of functions with the names
specified, functionNames to the software architecture component architecture. The addfunction
function adds functions to the software architecture of a component. Use
<component>.Architecture to access the architecture of a component.

To remove a function, use the destroy function.

Examples

Add Functions to Software Architecture Component

Create a model named mySoftwareArchitecture and get the root architecture.

model = systemcomposer.createModel("mySoftwareArchitecture","SoftwareArchitecture");
rootArch = model.Architecture

Architecture with properties:

 Name: 'mySoftwareArchitecture'
 Definition: Composition
 ...
 ExternalUID: ''
 Functions: []

Create a software component and two functions.

newComp = rootArch.addComponent("C1");
newFuncs = newComp.Architecture.addFunction({'f1','f2'});
rootArch

rootArch =

 Architecture with properties:

 Name: 'mySoftwareArchitecture'
 Definition: Composition
 ...
 ExternalUID: ''

4 Functions

4-28

 Functions: [1x2 systemcomposer.arch.Function]

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

functionNames — Names of functions
cell array of character vectors | array of strings

Names of functions, specified as a cell array of character vectors or an array of strings.
Data Types: char | string

Output Arguments
functions — Handles to created functions
array of function objects

Created functions, returned as an array of systemcomposer.arch.Function objects.

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

 addFunction

4-29

Term Definition Application More Information
software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

4 Functions

4-30

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

 addFunction

4-31

Version History
Introduced in R2022a

See Also
addComponent | systemcomposer.arch.Function

Topics
“Author and Extend Functions for Software Architectures”

4 Functions

4-32

addParameter
Package: systemcomposer.arch

Add parameter to architecture

Syntax
param = addParameter(arch,paramName)
param = addParameter(arch,Name,Value)

Description
param = addParameter(arch,paramName) adds a parameter, param, with the name paramName
to the architecture arch.

To delete a parameter, use the destroy function.

param = addParameter(arch,Name,Value) promotes a parameter from a component specified
by a path to the parent architecture arch.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

 addParameter

4-33

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

4 Functions

4-34

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)

 addParameter

4-35

 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

4 Functions

4-36

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 addParameter

4-37

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

4 Functions

4-38

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addParameter(arch,Path="Propeller/Hub",Parameters="all")

Path — Path to component with parameter
character vector | string

Path to component with parameter, specified as a character vector or string.
Example: addParameter(arch,Path="Propeller/Hub")

 addParameter

4-39

Data Types: char | string

Parameters — Parameters to promote
"all" (default) | array of strings

Parameters to promote, specified as "all" or an array of strings.
Data Types: char | string

Output Arguments
param — Parameter
parameter object

Parameter, returned as a systemcomposer.arch.Parameter object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-40

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 addParameter

4-41

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-42

Version History
Introduced in R2022b

See Also
getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterValue | setParameterValue | setUnit |
getParameterNames | resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 addParameter

4-43

addPort
Package: systemcomposer.arch

Add ports to architecture

Syntax
ports = addPort(arch,portNames,portTypes)
ports = addPort(arch,portNames,portTypes,stereotypes)

Description
ports = addPort(arch,portNames,portTypes) adds a set of ports with specified names
portNames and types portTypes. The addPort function adds ports to the architecture of a
component or the root architecture of the model. Use <component>.Architecture to access the
architecture of a component.

To remove a port, use the destroy function.

ports = addPort(arch,portNames,portTypes,stereotypes) also applies stereotypes
specified in stereotypes to a set of new ports.

Examples

Add Port to Architecture

Create a model, get the root architecture, add a component, and add a port.

model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"NewComponent");
newPort = addPort(newComponent.Architecture,"NewCompPort","in")

newPort =

 ArchitecturePort with properties:

 Parent: [1×1 systemcomposer.arch.Architecture]
 Name: 'NewCompPort'
 Direction: Input
 InterfaceName: ''
 Interface: [0×0 systemcomposer.interface.DataInterface]
 Connectors: [0×0 systemcomposer.arch.Connector]
 Connected: 0
 Model: [1×1 systemcomposer.arch.Model]
 SimulinkHandle: 57.0018
 SimulinkModelHandle: 10.0018

4 Functions

4-44

 UUID: 'f3dd03e1-af14-47ed-88c8-0ce301b2da5f'
 ExternalUID: ''

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

portNames — Names of ports
cell array of character vectors | array of strings | character vector | string

Names of ports, specified as a cell array of character vectors or an array of strings. If necessary,
System Composer appends a number to the port name to ensure uniqueness. The size of portNames,
portTypes, and stereotypes must be the same.
Data Types: char | string

portTypes — Port types
cell array of character vectors | array of strings | character vector | string

Port types, specified as a cell array of character vectors or an array of strings. Available port types
follow:

• "in"
• "out"
• "physical"
• "client" for software architectures
• "server" for software architectures

Data Types: char | string

stereotypes — Stereotypes to apply to ports
array of stereotype objects

Stereotypes to apply to ports, specified as an array of systemcomposer.profile.Stereotype
objects. Each stereotype in the array must either be a stereotype that applies to all element types or a
port stereotype.

Output Arguments
ports — Created ports
array of ports

Created ports, returned as an array of systemcomposer.arch.ArchitecturePort objects.

 addPort

4-45

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-46

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

 addPort

4-47

Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

4 Functions

4-48

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
destroy | systemcomposer.arch.BasePort | addComponent | connect | Component

Topics
“Ports”

 addPort

4-49

addProperty
Package: systemcomposer.profile

Define custom property for stereotype

Syntax
property = addProperty(stereotype,name)
property = addProperty(stereotype,name,Name,Value)

Description
property = addProperty(stereotype,name) returns a new property definition with name
that is contained in stereotype.

To remove a property, use the removeProperty function.

property = addProperty(stereotype,name,Name,Value) returns a property definition that
is configured with specified property values.

Examples

Add Property

Add a component stereotype and add a VoltageRating property with value 5.

profile = systemcomposer.profile.Profile.createProfile("myProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component");
property = addProperty(stereotype,"VoltageRating",DefaultValue="5");

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

name — Name of property
character vector | string

Name of property unique within the stereotype, specified as a character vector or string.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

4 Functions

4-50

Example: addProperty(stereotype,"Amount",Type="double")

Type — Property data type
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Type of this property. One of valid data types or the name of a MATLAB class that defines an
enumeration. For more information, see “Use Enumerated Data in Simulink Models”.
Example: addProperty(stereotype,"Color",Type="BasicColors")
Data Types: char | string

Dimensions — Dimensions of property
positive integer array

Dimensions of property, specified as a positive integer array. Empty implies no restriction.
Example: addProperty(stereotype,"Amount",Dimensions=2)
Data Types: double

Min — Minimum value
numeric

Optional minimum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property,min,max)
Example: addProperty(stereotype,"Amount",Min="0")
Data Types: double

Max — Maximum value
numeric

Optional maximum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property,min,max)
Example: addProperty(stereotype,"Amount",Max="100")
Data Types: double

Units — Property units
character vector | string

Units of the property value, specified as a character vector or string. If specified, all values of this
property on model elements are checked for consistency with these units according to Simulink unit
checking rules. For more information, see “Unit Consistency Checking and Propagation”.
Example: addProperty(stereotype,"Amount",Units="kg")
Data Types: char | string

DefaultValue — Default value
character vector | string

 addProperty

4-51

Default value of this property, specified as a character vector or string that can be evaluated
depending on the Type.
Data Types: char | string

Output Arguments
property — Created property
property object

Created property, returned as a systemcomposer.profile.Property object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

4 Functions

4-52

Term Definition Application More Information
profile A profile is a package of

stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
getProperty | setProperty | removeProperty

Topics
“Define Profiles and Stereotypes”
“Set Properties for Analysis”

 addProperty

4-53

addReference
Package: systemcomposer.interface

Add reference to dictionary

Syntax
addReference(dictionary,reference,collisionResolutionOption)

Description
addReference(dictionary,reference,collisionResolutionOption) adds a referenced
dictionary to a dictionary in a System Composer model.

Examples

Add Referenced Dictionary

Add a data interface newInterface to the local interface dictionary of the model. Save the local
interface dictionary to a shared dictionary as an SLDD file.
arch = systemcomposer.createModel("newModel",true);
addInterface(arch.InterfaceDictionary,"newInterface");
saveToDictionary(arch,"TopDictionary")
topDictionary = systemcomposer.openDictionary("TopDictionary.sldd");

Create a new dictionary and add it as a reference to the existing dictionary.
refDictionary = systemcomposer.createDictionary("ReferenceDictionary.sldd");
addReference(topDictionary,"ReferenceDictionary.sldd")

Confirm in the Model Explorer.

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

reference — Referenced dictionary
character vector | string

Referenced dictionary, specified as a character vector or string of the name of the referenced
dictionary with the .sldd extension.
Example: "ReferenceDictionary.sldd"

4 Functions

4-54

Data Types: char | string

collisionResolutionOption — Collision resolution option
"Unspecified" (default) | "KeepTop" | "KeepReference'"

Collision resolution option if there is a conflict between two interfaces with the same name in the
dictionaries, specified as one of the following:

• "KeepTop" to keep the interface from the top dictionary and remove the one in the reference
dictionary.

• "KeepReference" to keep the interface from the reference dictionary and remove the one in the
top dictionary.

• "Unspecified", which will error if any conflicts exist when creating the reference.

Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

 addReference

4-55

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-56

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021a

See Also
saveToDictionary | createDictionary | openDictionary | linkDictionary |
unlinkDictionary | removeReference

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 addReference

4-57

addServiceInterface
Package: systemcomposer.interface

Create named service interface in interface dictionary

Syntax
interface = addServiceInterface(dictionary,name)

Description
interface = addServiceInterface(dictionary,name) adds the service interface specified by
the name name to the interface dictionary dictionary.

To remove an interface, use the removeInterface function.

Examples

Add Service Interface

Create a data dictionary, then add a service interface named newInterface.

dictionary = systemcomposer.createDictionary("new_dictionary.sldd");
interface = addServiceInterface(dictionary,"newInterface")

Create a new model and link the data dictionary. Then, open the Interface Editor to view the new
interface.

arch = systemcomposer.createModel("newModel",true);
linkDictionary(arch,"new_dictionary.sldd");

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of new service interface
character vector | string

Name of new service interface, specified as a character vector or string. This name must be a valid
MATLAB identifier.
Example: "newInterface"

4 Functions

4-58

Data Types: char | string

Output Arguments
interface — New service interface
service interface object

New service interface, returned as a systemcomposer.interface.ServiceInterface object.

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

 addServiceInterface

4-59

Term Definition Application More Information
service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

4 Functions

4-60

Term Definition Application More Information
class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 addServiceInterface

4-61

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

4 Functions

4-62

See Also
addElement | createDictionary | addInterface | getInterface | getInterfaceNames |
removeInterface | linkDictionary | Adapter | addValueType | getFunctionArgument |
setAsynchronous | setFunctionPrototype

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

 addServiceInterface

4-63

addStereotype
Package: systemcomposer.profile

Add stereotype to profile

Syntax
stereotype = addStereotype(profile,name)
stereotype = addStereotype(___ ,Name,Value)

Description
stereotype = addStereotype(profile,name) adds a new stereotype with a specified name
name to a profile profile.

stereotype = addStereotype(___ ,Name,Value) adds a new stereotype with the previous
input arguments and specifies properties for the stereotype.

Examples

Add Component Stereotype

Add a component stereotype to a profile.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component")

stereotype =
 Stereotype with properties:

 Name: 'electricalComponent'
 Description: ''
 Parent: [0×0 systemcomposer.profile.Stereotype]
 AppliesTo: 'Component'
 Abstract: 0
 Icon: ''
 ComponentHeaderColor: [210 210 210]
 ConnectorLineColor: [168 168 168]
 ConnectorLineStyle: 'Default'
 FullyQualifiedName: 'LatencyProfile.electricalComponent'
 Profile: [1×1 systemcomposer.profile.Profile]
 OwnedProperties: [0×0 systemcomposer.profile.Property]
 Properties: [0×0 systemcomposer.profile.Property]

close(profile,true)

4 Functions

4-64

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

name — Stereotype name
character vector | string

Stereotype name, specified as a character vector or string. The name of the stereotype must be
unique within the profile.
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addStereotype(profile,'electricalComponent',AppliesTo="Component")

Description — Description text for stereotype
character vector | string

Description text for stereotype, specified as a character vector or string.
Example: addStereotype(profile,'electricalComponent',Description="These
components are electrical")

Data Types: char | string

Icon — Icon name for stereotype
character vector | string

Icon name for stereotype, specified as a character vector or string. Built in options include:

• "default"
• "application"
• "channel"
• "controller"
• "database"
• "devicedriver"
• "memory"
• "network"
• "plant"
• "sensor"
• "subsystem"
• "transmitter"

 addStereotype

4-65

This name-value argument is only valid for component stereotypes. The element a stereotype applies
to is set with the AppliesTo name-value argument.
Example: addStereotype(profile,"electricalComponent",Icon="default")
Data Types: char | string

Parent — Stereotype from which stereotype inherits properties
stereotype object

Stereotype from which stereotype inherits properties, specified as a
systemcomposer.profile.Stereotype object.
Example: addStereotype(profile,"electricalComponent",Parent=baseStereotype)

AppliesTo — Element type to which stereotype can be applied
"" (default) | "Component" | "Port" | "Connector" | "Interface" | "Function" |
"Requirement" | "Link"

Element type to which stereotype can be applied, specified as one of these options:

• "" to apply stereotype to all element types
• "Component"
• "Port"
• "Connector"
• "Interface"
• "Function", which is only available for software architectures
• "Requirement", to be used with Requirements Toolbox
• "Link", to be used with Requirements Toolbox

Example: addStereotype(profile,"electricalComponent",AppliesTo="Port")
Data Types: char | string

Abstract — Whether stereotype is abstract
falseor 0 (default) | true or 1

Whether stereotype is abstract, specified as a logical. If true, then the stereotype cannot be directly
applied on model elements, but instead serves as a parent for other stereotypes.
Example: addStereotype(profile,'electricalComponent','Abstract',true)
Data Types: logical

ComponentHeaderColor — Component header color
1x3 uint32 row vector

Component header color, specified as a 1x3 uint32 row vector in the form [Red Green Blue].

This name-value argument is only valid for component stereotypes. The element a stereotype applies
to is set with the AppliesTo name-value argument.
Example: addStereotype(profile,'electricalComponent','ComponentHeaderColor',
[206 232 246])

Data Types: uint32

4 Functions

4-66

ConnectorLineColor — Connector line color
1x3 uint32 row vector

Connector line color, specified as a 1x3 uint32 row vector in the form [Red Green Blue].

This name-value argument is only valid for connector, port, and interface stereotypes. The element a
stereotype applies to is set with the AppliesTo name-value argument.
Example: addStereotype(profile,'electricalComponent','ConnectorLineColor',[206
232 246])

Data Types: uint32

ConnectorLineStyle — Connector line style
character vector | string

Connector line style name, specified as a character vector or string. Options include:

• "Default"
• "Dot"
• "Dash"
• "Dash Dot"
• "Dash Dot Dot"

This name-value argument is only valid for connector, port, and interface stereotypes. The element a
stereotype applies to is set with the AppliesTo name-value argument.
Data Types: char | string

Output Arguments
stereotype — Created stereotype
stereotype object

Created stereotype, returned as a systemcomposer.profile.Stereotype object.

 addStereotype

4-67

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
getStereotype | getDefaultStereotype | setDefaultStereotype | removeStereotype

4 Functions

4-68

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

 addStereotype

4-69

addValueType
Package: systemcomposer.interface

Create named value type in interface dictionary

Syntax
valueType = addValueType(dictionary,name)
valueType = addValueType(dictionary,name,Name,Value)

Description
valueType = addValueType(dictionary,name) adds a named value type to a specified
interface dictionary.

To remove a value type, use the destroy function.

valueType = addValueType(dictionary,name,Name,Value) adds a named value type to a
specified interface dictionary with additional options.

Examples

Add Value Type

Create a data dictionary and add a value type airSpeed.

dictionary = systemcomposer.createDictionary("new_dictionary.sldd");
airSpeedType = addValueType(dictionary,"airSpeed")

Create a new model, link the data dictionary to the model, and view the Interface Editor to confirm
the existence of the new value type airSpeed.

arch = systemcomposer.createModel("newModel",true);
linkDictionary(arch,"new_dictionary.sldd");

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of new value type
character vector | string

4 Functions

4-70

Name of new value type, specified as a character vector or string. This name must be a valid MATLAB
identifier.
Example: "airSpeed"
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
addValueType(dictionary,"airSpeed",DataType="double",Dimensions="2",Units="m/
s",Complexity="complex",Minimum="0",Maximum="100",Description="Maintain
altitude")

DataType — Data type of value type
character vector | string

Data type of value type, specified as a character vector or string for a valid MATLAB data type. The
default value is double.
Example: addValueType(dictionary,"airSpeed",DataType="double")
Data Types: char | string

Dimensions — Dimensions of value type
character vector | string

Dimensions of value type, specified as a character vector or string. The default value is 1.
Example: addValueType(dictionary,"airSpeed",Dimensions="2")
Data Types: char | string

Units — Units of value type
character vector | string

Units of value type, specified as a character vector or string.
Example: addValueType(dictionary,"airSpeed",Units="m/s")
Data Types: char | string

Complexity — Complexity of value type
character vector | string

Complexity of value type, specified as a character vector or string. The default value is real. Other
possible values are complex and auto.
Example: addValueType(dictionary,"airSpeed",Complexity="complex")
Data Types: char | string

Minimum — Minimum of value type
character vector | string

 addValueType

4-71

Minimum of value type, specified as a character vector or string.
Example: addValueType(dictionary,"airSpeed",Minimum="0")
Data Types: char | string

Maximum — Maximum of value type
character vector | string

Maximum of value type, specified as a character vector or string.
Example: addValueType(dictionary,"airSpeed",Maximum="100")
Data Types: char | string

Description — Description of value type
character vector | string

Description of value type, specified as a character vector or string.
Example: addValueType(dictionary,"airSpeed",Description="Maintain altitude")
Data Types: char | string

Output Arguments
valueType — Value type
value type object

Value type, returned as a systemcomposer.ValueType object.

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

4 Functions

4-72

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 addValueType

4-73

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addElement | createDictionary | getInterface | getInterfaceNames | removeInterface |
linkDictionary | Adapter | addPhysicalInterface | addInterface

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-74

addVariantComponent
Package: systemcomposer.arch

Add variant components to architecture

Syntax
variants = addVariantComponent(arch,variantComponents)
variants = addVariantComponent(___ ,'Position',position)

Description
variants = addVariantComponent(arch,variantComponents) adds a set of variant
components specified by the array of names.

To remove a variant component, use the destroy function.

variants = addVariantComponent(___ ,'Position',position) creates variant components
in the architecture at a given position.

Examples

Create Variant Components

Create a model, get its root architecture, and create two variant components.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
names = ["Component1","Component2"];
variantComps = addVariantComponent(arch,names)

variantComps=1×2 object
 1×2 VariantComponent array with properties:

 Architecture
 Name
 Parent
 Ports
 OwnedPorts
 OwnedArchitecture
 Position
 Model
 SimulinkHandle
 SimulinkModelHandle
 UUID
 ExternalUID

 addVariantComponent

4-75

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

variantComponents — Names of variant components
cell array of character vectors | array of strings

Names of variant components, specified as a cell array of character vectors or an array of strings.
Data Types: char | string

position — Vector that specifies location of top corner and bottom corner of component
1x4 numeric array

Vector that specifies location of top corner and bottom corner of component, specified as a 1x4
numeric array. The array denotes the top corner in terms of its x and y coordinates followed by the x
and y coordinates of the bottom corner. When adding more than one variant component, a matrix of
size [Nx4] may be specified where N is the number of variant components being added.
Data Types: double

Output Arguments
variants — Variant components
array of components

Variant components, returned as an array of systemcomposer.arch.VariantComponent objects.
This array is the same size as variantComponents.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-76

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 addVariantComponent

4-77

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
addPort | connect | addChoice | getActiveChoice | setActiveChoice | Variant Component

Topics
“Create Variants”

4 Functions

4-78

allocate
Package: systemcomposer.allocation

Create new allocation

Syntax
allocation = allocate(allocScenario,sourceElement,targetElement)

Description
allocation = allocate(allocScenario,sourceElement,targetElement) creates a new
allocation between the source element sourceElement and target element targetElement.

To remove an allocation, use the deallocate function.

Examples

Create Allocation Set and Allocate Elements Between Models

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocScenario — Allocation scenario
allocation scenario object

Allocation scenario , specified as a systemcomposer.allocation.AllocationScenario object.

 allocate

4-79

sourceElement — Source element
element object

Source element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

targetElement — Target element
element object

Target element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

Output Arguments
allocation — Allocation
allocation object

Allocation between source and target element, returned as a
systemcomposer.allocation.Allocation object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

4 Functions

4-80

Term Definition Application More Information
allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
getAllocation | getAllocatedFrom | getAllocatedTo | deallocate | destroy |
getScenario | createAllocationSet

Topics
“Create and Manage Allocations Programmatically”

 allocate

4-81

AnyComponent
Package: systemcomposer.query

Create query to select all components in model

Syntax
query = AnyComponent

Description
query = AnyComponent creates a query query that the find and createView functions use to
select all components in the model.

Examples

Select All Components in Model

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query to find all components and list the second component.

constraint = AnyComponent;
components = find(model,constraint,Recurse=true,IncludeReferenceModels=true);
comp = components(2)

comp = 1x1 cell array
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator'}

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

4 Functions

4-82

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 AnyComponent

4-83

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

4 Functions

4-84

applyProfile
Package: systemcomposer.arch

Apply profile to model

Syntax
applyProfile(model,profileFile)
applyProfile(model,profileFile,Name,Value)

Description
applyProfile(model,profileFile) applies a profile to an architecture model and makes all the
constituent stereotypes available.

applyProfile(model,profileFile,Name,Value) specifies additional options using one or more
name-value arguments.

Examples

Apply Profile

Create a model.

model = systemcomposer.createModel("archModel",true);

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

profileFile — Name of profile
character vector | string

Name of profile, specified as a character vector or string.
Example: "SystemProfile"
Data Types: char | string

 applyProfile

4-85

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: applyProfile(model,profileFile,IncludeReferenceModels=true)

IncludeReferenceModels — Option to apply profile to all referenced component models
false or 0 (default) | true or 1

Option to apply profile to all referenced component models, specified as a logical.
Example: applyProfile(model,profileFile,IncludeReferenceModels=true)
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-86

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 applyProfile

4-87

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
removeProfile | createProfile

Topics
“Define Profiles and Stereotypes”

4 Functions

4-88

applyStereotype
Package: systemcomposer.arch

Apply stereotype to architecture model element

Syntax
applyStereotype(element,stereotype)

Description
applyStereotype(element,stereotype) applies a stereotype to an architecture model element
if the stereotype is not already applied to a model element. Stereotypes can be applied to
architecture, component, port, connector, interface, and function model elements. The function model
element is only available in software architectures.

Examples

Apply Stereotype

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Apply the stereotype to the component and get the stereotypes on the component.

comp.applyStereotype("LatencyProfile.LatencyBase");
stereotypes = getStereotypes(comp)

stereotypes =

 1×1 cell array

 applyStereotype

4-89

 {'LatencyProfile.LatencyBase'}

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

stereotype — Name of stereotype
character vector | string

Name of stereotype, specified as a character vector or string in the form
"<profile>.<stereotype>". The profile must already be applied to the model.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-90

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 applyStereotype

4-91

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

4 Functions

4-92

Term Definition Application More Information
physical port A physical port represents a

Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
batchApplyStereotype | removeStereotype | getStereotypes | getStereotypeProperties

Topics
“Use Stereotypes and Profiles”

 applyStereotype

4-93

batchApplyStereotype
Package: systemcomposer.arch

Apply stereotype to all elements in architecture

Syntax
batchApplyStereotype(arch,elementType,stereotype)
batchApplyStereotype(___ ,'Recurse',flag)

Description
batchApplyStereotype(arch,elementType,stereotype) applies the stereotype stereotype
to all elements that match the element type elementType within the architecture arch.

batchApplyStereotype(___ ,'Recurse',flag) applies the stereotype stereotype to all
elements that match the element type elementType within the architecture arch and recursively to
its sub-architectures according to the value of flag.

Examples

Apply Stereotype to All Connectors

Create a profile, add a connector stereotype, and add a property with a default value. Open the
Profile Editor to inspect the profile.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
stereotype = addStereotype(profile,"standardConn",AppliesTo="Connector");
stereotype.addProperty("latency",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)

Create a model with three components, ports, and connectors between them. Improve the model
layout.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");
names = ["Component1","Component2","Component3"];
newComponents = addComponent(rootArch,names);
outPort1 = addPort(newComponents(1).Architecture,"testSig1","out");
inPort1 = addPort(newComponents(2).Architecture,"testSig1","in");
outPort2 = addPort(newComponents(2).Architecture,"testSig2","out");
inPort2 = addPort(newComponents(3).Architecture,"testSig2","in");
conn1 = connect(newComponents(1),newComponents(2));
conn2 = connect(newComponents(2),newComponents(3));
Simulink.BlockDiagram.arrangeSystem(modelName)

Apply the profile to the model.

arch.applyProfile("LatencyProfile");

4 Functions

4-94

Apply the connector stereotype to all the connectors in the architecture rootArch. Inspect the
connectors in the Property Inspector to confirm the applied stereotypes.

batchApplyStereotype(rootArch,"Connector","LatencyProfile.standardConn")

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

elementType — Element type
"Component" | "Port" | "Connector" | "Interface" | "Function"

Element type, specified as "Component", "Port", "Connector", "Interface", or "Function".
The element type "Function" is only available for software architectures.
Data Types: char | string

stereotype — Stereotype to apply
character vector | string

Stereotype to apply, specified as a character vector or string in the form
"<profile>.<stereotype>". This stereotype must be applicable for the element type.
Data Types: char | string

flag — Whether to apply stereotype recursively
false or 0 (default) | true or 1

Whether to apply stereotype recursively, specified as a logical. If flag is 1 (true), the stereotype is
applied to the elements in the architecture and its sub-architectures.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 batchApplyStereotype

4-95

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-96

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
removeStereotype | applyStereotype | getStereotypes

Topics
“Use Stereotypes and Profiles”

 batchApplyStereotype

4-97

close
Package: systemcomposer.profile

Close profile

Syntax
close(profile,force)

Description
close(profile,force) closes the profile and deletes it from the workspace. If there are any
unsaved changes, you will receive an error unless the argument force is set to true.

Tip Use closeAll to force close all loaded profiles.

Examples

Close Profile

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Force close profile and attempt to inspect it.
profile.close(true)
profile

4 Functions

4-98

 profile =

 handle to deleted Profile

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

force — Whether to force close profile
false or 0 (default) | true or 1

Whether to force close profile, specified as a logical 1 (true) to close the profile without saving or 0
(false) to be prompted to save the profile before closing.
Data Types: logical

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

 close

4-99

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
systemcomposer.profile.Profile | open | editor | load | find | closeAll | save

Topics
“Define Profiles and Stereotypes”

4 Functions

4-100

close
Package: systemcomposer.arch

Close architecture model

Syntax
close(model)

Description
close(model) closes the specified model in System Composer.

Examples

Create, Open, and Close Model

model = systemcomposer.createModel("modelName");
open(model)
close(model)

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 close

4-101

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-102

Version History
Introduced in R2019a

See Also
createModel | save | loadModel

Topics
“Create Architecture Model”

 close

4-103

close
Package: systemcomposer.allocation

Close allocation set

Syntax
close(allocSet,force)

Description
close(allocSet,force) closes the allocation set allocSet. If there are any unsaved changes,
you will receive an error unless the argument force is true.

Tip Use closeAll to close all loaded allocation sets.

Examples

Close Allocation Set Without Saving

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Close the allocation set without saving.
allocSet.close(true)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocSet — Allocation set
allocation set object

4 Functions

4-104

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

force — Force close
false or 0 (default) | true or 1

Force close allocation set, specified as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createScenario | deleteScenario | getScenario | load | closeAll | synchronizeChanges

Topics
“Create and Manage Allocations Programmatically”

 close

4-105

systemcomposer.allocation.AllocationSet.closeAll
Close all open allocation sets

Syntax
systemcomposer.allocation.AllocationSet.closeAll

Description
systemcomposer.allocation.AllocationSet.closeAll closes all allocation sets without
saving.

Tip Use close to close one allocation set.

Examples

Close All Allocation Sets Without Saving

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Close all allocation sets without saving.
systemcomposer.allocation.AllocationSet.closeAll

Open the Allocation Editor.

4 Functions

4-106

systemcomposer.allocation.editor

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createScenario | deleteScenario | getScenario | load | close | synchronizeChanges |
find

Topics
“Create and Manage Allocations Programmatically”

 systemcomposer.allocation.AllocationSet.closeAll

4-107

systemcomposer.profile.Profile.closeAll
Close all open profiles

Syntax
systemcomposer.profile.Profile.closeAll

Description
systemcomposer.profile.Profile.closeAll force closes all open profiles without saving and
deletes them from the workspace.

Tip Use close to close one open profile.

Examples

Close All Profiles

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Close all open profiles and attempt to inspect one.
systemcomposer.profile.Profile.closeAll
profile

4 Functions

4-108

 profile =

 handle to deleted Profile

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

 systemcomposer.profile.Profile.closeAll

4-109

See Also
systemcomposer.profile.Profile | load | editor | open | find | close | save

Topics
“Define Profiles and Stereotypes”

4 Functions

4-110

connect
Package: systemcomposer.arch

Create architecture model connections

Syntax
connectors = connect(srcComponent,destComponent)
connectors = connect(arch,[srcComponent,srcComponent,...],[destComponent,
destComponent,...])
connectors = connect(arch,[],destComponent)
connectors = connect(arch,srcComponent,[])
connectors = connect(srcPort,destPort)
connectors = connect(srcPort,destPort,stereotype)
connectors = connect(___ ,Name,Value)

Description
connectors = connect(srcComponent,destComponent) connects the unconnected output
ports of the source component srcComponent to the unconnected input ports of the destination
component destComponent based on matching port names, and returns a handle to the connector.
For physical connections, the connectors are nondirectional so the source and destination
components can be interchanged.

To remove a connector, use the destroy function.

connectors = connect(arch,[srcComponent,srcComponent,...],[destComponent,
destComponent,...]) connects arrays of components in the architecture.

connectors = connect(arch,[],destComponent) connects a parent architecture input port to
a destination child component.

connectors = connect(arch,srcComponent,[]) connects a source child component to a
parent architecture output port.

connectors = connect(srcPort,destPort) connects a source port and a destination port, or
connects two nondirectional physical ports.

connectors = connect(srcPort,destPort,stereotype) connects two ports and applies a
stereotype to the connector.

connectors = connect(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntaxes.

Examples

Connect System Composer Components

Create and connect two components.

 connect

4-111

Create a top-level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Create two new components.

names = ["Component1","Component2"];
newComponents = addComponent(rootArch,names);

Add ports to the components.

outPort1 = addPort(newComponents(1).Architecture,"testSig","out");
inPort1 = addPort(newComponents(2).Architecture,"testSig","in");

Connect the components.

conns = connect(newComponents(1),newComponents(2));

Improve the model layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

Connect System Composer Ports

Create and connect two ports.

Create a top-level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Create two new components.

names = ["Component1","Component2"];
newComponents = addComponent(rootArch,names);

Add ports to the components.

outPort1 = addPort(newComponents(1).Architecture,"testSig","out");
inPort1 = addPort(newComponents(2).Architecture,"testSig","in");

Extract the component ports.

srcPort = getPort(newComponents(1),"testSig");
destPort = getPort(newComponents(2),"testSig");

Connect the ports.

conns = connect(srcPort,destPort);

Improve the model layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

4 Functions

4-112

Connect by Selecting Destination Element

Create and connect a destination architecture port interface element to a component.

Create a top-level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Create a new component.

newComponent = addComponent(rootArch,"Component1");

Add destination architecture ports to the component and the architecture.

outPortComp = addPort(newComponent.Architecture,"testSig","out");
outPortArch = addPort(rootArch,"testSig","out");

Extract corresponding port objects.

compSrcPort = getPort(newComponent,"testSig");
archDestPort = getPort(rootArch,"testSig");

Add an interface and an interface element, and associate the interface with the architecture port.

interface = arch.InterfaceDictionary.addInterface("interface");
interface.addElement("x");
archDestPort.setInterface(interface);

Select an element on the architecture port and establish a connection.

conns = connect(compSrcPort,archDestPort,DestinationElement="x");

Improve the model layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

srcComponent — Source component
component object | variant component object

Source component, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

destComponent — Destination component
component object | variant component object

Destination component, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

 connect

4-113

srcPort — Source port
port object

Source port to connect, specified as a systemcomposer.arch.ComponentPort or
systemcomposer.arch.ArchitecturePort object.

destPort — Destination port
port object

Destination port to connect, specified as a systemcomposer.arch.ComponentPort or
systemcomposer.arch.ArchitecturePort object.

stereotype — Stereotype
character vector | string

Stereotype to apply to the connection, specified in the form "<profile>.<stereotype>".
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: connect(archPort,compPort,SourceElement="a")

Stereotype — Option to apply stereotype to connector
character vector | string

Option to apply stereotype to connector, specified in the form "<profile>.<stereotype>".

This name-value argument applies only when you connect components.
Example: conns =
connect(srcComp,destComp,Stereotype="GeneralProfile.ConnStereotype")

Data Types: char | string

Rule — Option to specify rule for connections
"name" (default) | "interface"

Option to specify rule for connections, specified as either "name" based on the name of ports or
"interface" based on the interface name on ports.

This name-value argument applies only when you connect components.
Example: conns = connect([srcComp1,srcComp2],
[destComp1,destComp2],Rule="interface")

Data Types: char | string

MultipleOutputConnectors — Option to allow multiple destination components
false or 0 (default) | true or 1

4 Functions

4-114

Option to allow multiple destination components for the same source component, specified as a
logical.

This name-value argument applies only when you connect components.
Example: conns = connect(srcComp,
[destComp1,destComp2],MultipleOutputConnectors=true)

Data Types: logical

SourceElement — Option to select source element for connection
character vector | string

Option to select source element for connection, specified as a character vector or string of the name
of the data element.

This name-value argument applies only when you connect ports.
Example: conns = connect(archSrcPort,compDestPort,SourceElement="x")
Data Types: char | string

DestinationElement — Option to select destination element for connection
character vector | string

Option to select destination element for connection, specified as a character vector or string of the
name of the data element.

This name-value argument applies only when you connect ports.
Example: conns = connect(compSrcPort,archDestPort,DestinationElement="x")
Data Types: char | string

Routing — Option to specify type of automatic line routing
"smart" (default) | "on" | "off"

Option to specify type of automatic line routing, specified as one of the following:

• "smart" — Use automatic line routing that takes the best advantage of the blank spaces on the
canvas and avoids overlapping other lines and labels.

• "on" — Use automatic line routing.
• "off" — Use no automatic line routing.

Example: conns = connect(srcPort,destPort,Routing="on")
Data Types: char | string

Output Arguments
connectors — Created connections
array of connections

Created connections, returned as an array of systemcomposer.arch.Connector or
systemcomposer.arch.PhysicalConnector objects.

 connect

4-115

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-116

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

 connect

4-117

Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
openModel | createModel | addPort | getPort | addComponent | addElement | addInterface |
setInterface | getSourceElement | getDestinationElement | Component

Topics
“Connections”
“Build Architecture Models Programmatically”

4 Functions

4-118

systemcomposer.allocation.createAllocationSet
Create new allocation set

Syntax
allocSet = systemcomposer.allocation.createAllocationSet(name,sourceModel,
targetModel)

Description
allocSet = systemcomposer.allocation.createAllocationSet(name,sourceModel,
targetModel) creates a new allocation set with the given name in which the source and target
models are provided.

Examples

Create Allocation Set and Open in Allocation Editor

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
name — Name of allocation set
character vector | string

Name of allocation set, specified as a character vector or string.
Example: "MyNewAllocation"
Data Types: char | string

sourceModel — Source model for allocation
model object | character vector | string

 systemcomposer.allocation.createAllocationSet

4-119

Source model for allocation, specified as a systemcomposer.arch.Model object or the name of a
model as a character vector or string.
Data Types: char | string

targetModel — Target model for allocation
model object | character vector | string

Target model for allocation, specified as a systemcomposer.arch.Model object or the name of a
model as a character vector or string.
Data Types: char | string

Output Arguments
allocSet — Allocation set
allocation set object

Allocation set created, returned as a systemcomposer.allocation.AllocationSet object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
load | open | closeAll

4 Functions

4-120

Topics
“Create and Manage Allocations Programmatically”

 systemcomposer.allocation.createAllocationSet

4-121

createAnonymousInterface
Package: systemcomposer.arch

(To be removed) Create and set anonymous interface for port

Note The createAnonymousInterface function is not recommended in R2021b. It has been
replaced with the createInterface function. For further details, see “Compatibility
Considerations”.

Syntax
interface = createAnonymousInterface(port)

Description
interface = createAnonymousInterface(port) creates and sets an anonymous interface for
the specified port port.

Input Arguments
port — Port
port object

Port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

Output Arguments
interface — Data interface
data interface object

Data interface, returned as a systemcomposer.interface.DataInterface object.

Version History
Introduced in R2019a

R2021b: createAnonymousInterface function is not recommended

The createAnonymousInterface function is not recommended in R2021b. Use createInterface
instead.

See Also
Component | createInterface | addValueType | systemcomposer.ValueType | addInterface
| removeInterface

4 Functions

4-122

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 createAnonymousInterface

4-123

createArchitectureModel
Package: systemcomposer.arch

Create architecture model from component

Syntax
createArchitectureModel(component,modelName)
createArchitectureModel(component,modelName,modelType)

Description
createArchitectureModel(component,modelName) creates an architecture model from the
component component that references the model modelName.

Note Components with physical ports cannot be saved as architecture models, model references,
software architectures, or Stateflow chart behaviors. Components with physical ports can only be
saved as subsystem references or subsystem component behaviors.

createArchitectureModel(component,modelName,modelType) creates an architecture model
of type modelType from the component component that references the model modelName.

Examples

Create Architecture Model from Component

Save the component robotComp in the Robot.slx model and reference the model.

Create a model named archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components named "electricComp" and "robotComp" to the model.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);

Save the robotComp component in an architecture model so the component references the model
Robot.slx.

createArchitectureModel(comp(2),"Robot");

Create Software Architecture Model from Component

Save the component electricComp in the RobotSoftware.slx model and reference the model.

4 Functions

4-124

Create a model named archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components named 'electricComp' and 'robotComp' to the model.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);

Save the electricComp component in a software architecture model so the component references
the model RobotSoftware.slx.

createArchitectureModel(comp(1),"RobotSoftware","SoftwareArchitecture");

Create AUTOSAR Architecture Model from Component

Save the component throttlePositionControl in the autosarTpcSys.slx model and reference
the model.

Create a model named archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components named 'throttlePositionControl' and 'Sensor' to the model.

names = ["throttlePositionControl","Sensor"];
comp = addComponent(arch,names);

Save the throttlePositionControl component in a software architecture model so the
component references the model autosarTpcSys.slx.

createArchitectureModel(comp(1),"autosarTpcSys","ClassicAUTOSARArchitecture");

Input Arguments
component — Component
component object

Component, specified as a systemcomposer.arch.Component object. The component must have
an architecture with definition type composition. For other definition types, this function gives an
error.

modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

modelType — Type of model
"Architecture" (default) | "SoftwareArchitecture" | "ClassicAUTOSARArchitecture" |
"AdaptiveAUTOSARArchitecture"

 createArchitectureModel

4-125

Type of model, specified as one of these values:

• "Architecture" – An architecture model
• "SoftwareArchitecture" – A software architecture model
• "ClassicAUTOSARArchitecture" – A Classic AUTOSAR architecture model
• "AdaptiveAUTOSARArchitecture" – An Adaptive AUTOSAR architecture model

Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-126

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 createArchitectureModel

4-127

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-128

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 createArchitectureModel

4-129

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-130

Version History
Introduced in R2021b

See Also
inlineComponent | createSimulinkBehavior | createStateflowChartBehavior |
extractArchitectureFromSimulink | linkToModel | isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

 createArchitectureModel

4-131

systemcomposer.createDictionary
Create data dictionary

Syntax
dictionary = systemcomposer.createDictionary(dictionaryName)

Description
dictionary = systemcomposer.createDictionary(dictionaryName) creates a new
Simulink data dictionary to hold interfaces and returns the
systemcomposer.interface.Dictionary object.

Examples

Create New Dictionary

dictionary = systemcomposer.createDictionary("new_dictionary.sldd")

Input Arguments
dictionaryName — Name of new data dictionary
character vector | string

Name of new data dictionary, specified as a character vector or string. The name must include
the .sldd extension and must be a valid MATLAB identifier.
Example: "new_dictionary.sldd"
Data Types: char | string

Output Arguments
dictionary — Dictionary
dictionary object

Dictionary, returned as a systemcomposer.interface.Dictionary object.

4 Functions

4-132

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.createDictionary

4-133

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

4 Functions

4-134

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 systemcomposer.createDictionary

4-135

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
addValueType | addInterface | linkDictionary | saveToDictionary | unlinkDictionary |
openDictionary | addReference | removeReference

Topics
“Define Port Interfaces Between Components”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-136

createInterface
Package: systemcomposer.arch

Create and set owned interface for port

Syntax
interface = createInterface(port,kind)

Description
interface = createInterface(port,kind) creates and sets an owned interface for a port.

Examples

Create Owned Interface as Value Type

Create an architecture model archModel. Get the root architecture, then add a new component
newComponent and a new port newCompPort. Create an owned interface for the port as a
ValueType.

model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
newPort = addPort(newComponent.Architecture,"newCompPort","in");
interface = newPort.createInterface("ValueType")

interface =

 ValueType with properties:

 Name: ''
 DataType: 'double'
 Dimensions: '1'
 Units: ''
 Complexity: 'real'
 Minimum: '[]'
 Maximum: '[]'
 Description: ''
 Owner: [1×1 systemcomposer.arch.ArchitecturePort]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: 'd23669e1-f26c-4c64-a482-a27a33ac6541'
 ExternalUID: ''

Create Owned Interface as Data Interface and Remove Owned Interface

Create an architecture model archModel. Get the root architecture, then add a new component
newComponent and a new port newCompPort. Create an owned interface for the port as a
DataInterface.

 createInterface

4-137

model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
newPort = addPort(newComponent.Architecture,"newCompPort","in");
interface = newPort.createInterface("DataInterface");

Remove the owned interface from the port.

newPort.setInterface("");

Create Owned Interface for Physical Port as Physical Domain

Create an architecture model archModel. Get the root architecture, then add a new component
newComponent and a new physical port newCompPort. Create an owned interface for the physical
port and set the physical domain Domain property.

model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
newPort = addPort(newComponent.Architecture,"newCompPort","physical");
port = newComponent.getPort("newCompPort");
interface = port.createInterface("PhysicalDomain");
interface.Domain = "rotational.rotational"

interface =

 PhysicalDomain with properties:

 Domain: 'foundation.mechanical.rotational.rotational'
 Owner: [1×1 systemcomposer.arch.ArchitecturePort]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: '65f143cb-ed3a-49e1-bbc9-de89e84aa8e6'
 ExternalUID: ''

Input Arguments
port — Port
port object

Port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

kind — Kind of interface
"DataInterface" | "ValueType" | "PhysicalDomain"

Kind of interface, specified as one of these options:

• "DataInterface"
• "ValueType"
• "PhysicalDomain"

Data Types: char | string

4 Functions

4-138

Output Arguments
interface — Interface
data interface object | value type object | physical domain object

Interface, returned as a systemcomposer.interface.DataInterface,
systemcomposer.ValueType, or systemcomposer.interface.PhysicalDomain object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 createInterface

4-139

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

4 Functions

4-140

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 createInterface

4-141

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

4 Functions

4-142

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2021b

See Also
addValueType | createModel | addInterface | setType | createOwnedType |
addPhysicalInterface | removeInterface

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 createInterface

4-143

createOwnedType
Package: systemcomposer.interface

Create owned value type on data element or function argument

Syntax
ownedType = createOwnedType(dataElement)
ownedType = createOwnedType(dataElement,Name,Value)

Description
ownedType = createOwnedType(dataElement) creates an owned value type on a data element
or function argument.

An owned interface is an interface that is local to a specific port and not shared in a data dictionary
or the model dictionary.

ownedType = createOwnedType(dataElement,Name,Value) creates an owned value type on a
data element or function argument with additional options.

Examples

Create Owned Value Type on Data Element on Architecture Port

model = systemcomposer.createModel("archModel",true);

port = model.Architecture.addPort("inPort","in");
interface = port.createInterface("DataInterface");
element = interface.addElement("newElement");
subInterface = element.createOwnedType

subInterface =

 ValueType with properties:

 Name: ''
 DataType: 'double'
 Dimensions: '1'
 Units: ''
 Complexity: 'real'
 Minimum: '[]'
 Maximum: '[]'
 Description: ''
 Owner: [1×1 systemcomposer.interface.DataElement]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: 'd184ab90-2be9-4acc-9d94-ed62d0cf2827'
 ExternalUID: ''

Select the architecture port inPort on the architecture model and open the Property Inspector
from the Modeling menu. Under Open in Interface Editor, select the edit link. In the Interface

4 Functions

4-144

Editor, enter the Port Interface View. Observe the new data element newElement under the
port inPort.

Input Arguments
dataElement — Data element or function argument
data element object | function argument object

Data element or function argument, specified as a systemcomposer.interface.DataElement or
systemcomposer.interface.FunctionArgument object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: createOwnedType(dataElement,DataType="double",Dimensions="2",Units="m/
s",Complexity="complex",Minimum="0",Maximum="100",Description="Maintain
altitude")

DataType — Data type
character vector | string

Data type, specified as a character vector or string for a valid MATLAB data type. The default value is
double.
Example: createOwnedType(dataElement,DataType="double")
Data Types: char | string

Dimensions — Dimensions of value type
character vector | string

Dimensions of value type, specified as a character vector or string. The default value is 1.
Example: createOwnedType(dataElement,Dimensions="2")
Data Types: char | string

Units — Units of value type
character vector | string

Units of value type, specified as a character vector or string.
Example: createOwnedType(dataElement,Units="m/s")
Data Types: char | string

Complexity — Complexity of value type
character vector | string

Complexity of value type, specified as a character vector or string. The default value is real. Other
possible values are complex and auto.
Example: createOwnedType(dataElement,Complexity="complex")

 createOwnedType

4-145

Data Types: char | string

Minimum — Minimum of value type
character vector | string

Minimum of value type, specified as a character vector or string.
Example: createOwnedType(dataElement,Minimum="0")
Data Types: char | string

Maximum — Maximum of value type
character vector | string

Maximum of value type, specified as a character vector or string.
Example: createOwnedType(dataElement,Maximum="100")
Data Types: char | string

Description — Description of value type
character vector | string

Description of value type, specified as a character vector or string.
Example: createOwnedType(dataElement,Description="Maintain altitude")
Data Types: char | string

Output Arguments
ownedType — Owned value type
value type object

Owned value type, returned as a systemcomposer.ValueType object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-146

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 createOwnedType

4-147

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-148

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addValueType | createModel | addInterface | setType | addServiceInterface |
createInterface | removeInterface

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 createOwnedType

4-149

systemcomposer.createModel
Create System Composer model

Syntax
model = systemcomposer.createModel(modelName)
model = systemcomposer.createModel(modelName,openFlag)
model = systemcomposer.createModel(modelName,modelType,openFlag)

Description
model = systemcomposer.createModel(modelName) creates a System Composer model with
name modelName and returns the systemcomposer.arch.Model object.

model = systemcomposer.createModel(modelName,openFlag) creates a System Composer
model with name modelName and returns the systemcomposer.arch.Model object. This function
opens the model according to the value of the optional argument openFlag.

model = systemcomposer.createModel(modelName,modelType,openFlag) creates a System
Composer model with name modelName and type modelType and returns the
systemcomposer.arch.Model object. This function opens the model according to the value of
optional argument openFlag.

Examples

Create Model

Create a model, open it, and display its properties.

model = systemcomposer.createModel("model_name",true)

model =

 model with properties:

 Name: 'model_name'
 Architecture: [1×1 systemcomposer.arch.Architecture]
 SimulinkHandle: 2.0005
 Views: [0×0 systemcomposer.view.ViewArchitecture]
 Profiles: [0×0 systemcomposer.profile.Profile]
 InterfaceDictionary: [1×1 systemcomposer.interface.Dictionary]

Input Arguments
modelName — Name of new model
character vector | string

Name of new model, specified as a character vector or string. This name must be a valid MATLAB
identifier.

4 Functions

4-150

Example: "model_name"
Data Types: char | string

openFlag — Whether to open model
false or 0 (default) | true or 1

Whether to open model upon creation, specified as a logical.
Data Types: logical

modelType — Type of model
"Architecture" (default) | "SoftwareArchitecture"

Type of model to create, specified as "Architecture" for an architecture model or
"SoftwareArchitecture" for a software architecture model.
Data Types: char | string

Output Arguments
model — Architecture model
model object

Architecture model, returned as a systemcomposer.arch.Model object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 systemcomposer.createModel

4-151

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-152

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 systemcomposer.createModel

4-153

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-154

Version History
Introduced in R2019a

See Also
open | loadModel | save

Topics
“Compose Architectures Visually”

 systemcomposer.createModel

4-155

systemcomposer.profile.Profile.createProfile
Create profile

Syntax
profile = systemcomposer.profile.Profile.createProfile(profileName)

Description
profile = systemcomposer.profile.Profile.createProfile(profileName) creates a
new profile with name profileName.

Note Before you move, copy, or rename a profile to a different directory, you must close the profile in
the Profile Editor or by using the close function. If you rename a profile, follow the example for the
renameProfile function.

Examples

Create Profile

Create a model.

model = systemcomposer.createModel("archModel");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Save the profile in a file in the current directory as LatencyProfile.xml.

path = profile.save;

Input Arguments
profileName — Name of profile
character vector | string

Name of profile, specified as a character vector or string. Profile must be available on the MATLAB
path with a .xml extension.
Example: "LatencyProfile"
Data Types: char | string

4 Functions

4-156

Output Arguments
profile — Profile
profile object

Profile, returned as a systemcomposer.profile.Profile object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

 systemcomposer.profile.Profile.createProfile

4-157

Version History
Introduced in R2019a

See Also
applyProfile | loadProfile | editor | removeProfile | save | load | open | find

Topics
“Create a Profile and Add Stereotypes”

4 Functions

4-158

createScenario
Package: systemcomposer.allocation

Create new empty allocation scenario

Syntax
scenario = createScenario(allocSet,name)

Description
scenario = createScenario(allocSet,name) creates a new empty allocation scenario in the
allocation set allocSet with the given name name.

Examples

Create Allocation Set and Create New Scenario

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Create a new allocation scenario.
newScenario = createScenario(allocSet,"Scenario 2");

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

name — Name of allocation scenario
character vector | string

Name of allocation scenario, specified as a character vector or string.

 createScenario

4-159

Example: "Scenario 1"
Data Types: char | string

Output Arguments
scenario — New empty allocation scenario
allocation scenario object

New empty allocation scenario, returned as a
systemcomposer.allocation.AllocationScenario object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
deleteScenario | getScenario | synchronizeChanges | load | closeAll | find | close

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-160

createSimulinkBehavior
Package: systemcomposer.arch

Create Simulink behavior and link to component

Syntax
createSimulinkBehavior(component,modelName)
createSimulinkBehavior(component,modelName,"Type",type)
createSimulinkBehavior(component,"Type",type)
createSimulinkBehavior(component,modelName,"BehaviorType",behavior)

Description
createSimulinkBehavior(component,modelName) creates a new Simulink model, modelName,
with the same interfaces as the component component and links the component to the new model.
The component must have no children.

Note Components with physical ports cannot be saved as architecture models, model references,
software architectures, or Stateflow chart behaviors. Components with physical ports can only be
saved as subsystem references or subsystem component behaviors.

If no functions are present in software architectures, this syntax creates a rate-based behavior. If
functions are present, the syntax creates an export-function behavior.

createSimulinkBehavior(component,modelName,"Type",type) creates a new Simulink
model or subsystem behavior, modelName, with the same interfaces as the component component
and links the component to the new model. For more information, see “Create Referenced Simulink
Behavior Model”.

Use this syntax to convert a subsystem component to a subsystem reference.

createSimulinkBehavior(component,"Type",type) creates a subsystem component behavior
that is part of the parent model. The connections, interfaces, requirement links, and stereotypes of
the component are preserved. The component must have no subcomponents and must not already be
linked to a model. For more information, see “Create Simulink Subsystem Behavior Using Subsystem
Component”.

createSimulinkBehavior(component,modelName,"BehaviorType",behavior) creates a
new Simulink rate-based or export-function behavior, modelName, and links the software component
to the new model. You can create rate-based or export-function behaviors for software architectures.

Examples

 createSimulinkBehavior

4-161

Create Simulink Model and Link to Component

Create a Simulink model behavior for the component robotComp in Robot.slx and link the model
file to the component.

Create a model archModel.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model electricComp and robotComp. Rearrange the model.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);
Simulink.BlockDiagram.arrangeSystem("archModel")

Create a Simulink behavior model for the robotComp component so the component references the
Simulink model Robot.slx.

createSimulinkBehavior(comp(2),"Robot")

Create Subsystem Reference Component

Create a Simulink subsystem behavior for the component robotComp in Robot.slx and link the
subsystem file to the component.

Create a model archModel.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model electricComp and robotComp. Rearrange the model.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);
Simulink.BlockDiagram.arrangeSystem("archModel")

Create a Simulink subsystem reference behavior for the robotComp component so the component
references the Simulink subsystem Robot.slx.

createSimulinkBehavior(comp(2),"Robot",Type="SubsystemReference")

Create Subsystem Component Behavior and Convert to Subsystem Reference

Create a Simulink subsystem behavior for the component robotComp in Robot.slx and link the
subsystem file to the component.

Create a model archModel.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model electricComp and robotComp. Rearrange the model.

4 Functions

4-162

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);
Simulink.BlockDiagram.arrangeSystem("archModel")

Create a Simulink subsystem component behavior for the robotComp component that is part of the
parent model.

createSimulinkBehavior(comp(2),Type="Subsystem")

Convert the subsystem component to a subsystem reference component behavior so the component
references the Simulink subsystem Robot.slx.

createSimulinkBehavior(comp(2),"Robot",Type="SubsystemReference")

Create Simulink Model with Export-Function Behavior and Link to Software Component

Create a Simulink model with export-function behavior myBehaviorModel.slx for the software
component named C1 and link the model to the component.

Create a software architecture model named mySoftwareModel.
model=systemcomposer.createModel("mySoftwareModel","SoftwareArchitecture",true);
arch = get(model,"Architecture");

Add a component C1 to the model.

comp = addComponent(arch,"C1");

Create a Simulink model with an export-function behavior named myBeheaviorModel.slx that is
referenced by the component C1.
createSimulinkBehavior(comp,"myBehaviorModel",BehaviorType="ExportFunction")

Input Arguments
component — System or software architecture component
component object

System or software architecture component with no children, specified as a
systemcomposer.arch.Component object. This component can also be specified as a subsystem
component to be converted to a subsystem reference.

modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

behavior — Component behavior
"RateBased" | "ExportFunction"

Component behavior, specified as one of these values:

 createSimulinkBehavior

4-163

• "RateBased" to create a rate-based component behavior
• "ExportFunction" to create an export-function component behavior

Data Types: char | string

type — Component behavior
"ModelReference" | "SubsystemReference" | "Subsystem"

Component behavior, specified as one of these values:

• "ModelReference" to create a Simulink model reference component behavior
• "SubsystemReference" to create a Simulink subsystem reference component behavior
• "Subsystem" to create a Simulink subsystem component behavior

Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-164

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 createSimulinkBehavior

4-165

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-166

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 createSimulinkBehavior

4-167

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-168

Version History
Introduced in R2019a

See Also
inlineComponent | createArchitectureModel | createStateflowChartBehavior |
extractArchitectureFromSimulink | linkToModel | isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

 createSimulinkBehavior

4-169

createStateflowChartBehavior
Package: systemcomposer.arch

Add Stateflow chart behavior to component

Syntax
createStateflowChartBehavior(component)

Description
createStateflowChartBehavior(component) adds Stateflow Chart behavior to a component
component. The connections, interfaces, requirement links, and stereotypes are preserved. The
component must have no subcomponents and must not already be linked to a model.

Note Components with physical ports cannot be saved as architecture models, model references,
software architectures, or Stateflow chart behaviors. Components with physical ports can only be
saved as subsystem references or subsystem component behaviors.

Examples

Add Stateflow Chart Behavior to Component

Add Stateflow chart behavior to the component named "robotComp" within the current model.

Create a model named "archModel".

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model with the names "electricComp" and "robotComp". Rearrange
the model.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);
Simulink.BlockDiagram.arrangeSystem("archModel")

Add Stateflow chart behavior to the robotComp component.

createStateflowChartBehavior(comp(2));

Input Arguments
component — Component
component object

Component with no subcomponents, specified as a systemcomposer.arch.Component object.

4 Functions

4-170

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 createStateflowChartBehavior

4-171

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

4 Functions

4-172

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2021a

See Also
inlineComponent | createSimulinkBehavior | createArchitectureModel |
extractArchitectureFromSimulink | linkToModel | isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

 createStateflowChartBehavior

4-173

createSubsystemBehavior
Package: systemcomposer.arch

Add subsystem behavior to component

Note The createSubsystemBehavior function is not recommended. Use the
createSimulinkBehavior function instead. For more information, see “Compatibility
Considerations”.

Syntax
createSubsystemBehavior(component)

Description
createSubsystemBehavior(component) adds subsystem behavior to the component component.
The connections, interfaces, requirement links, and stereotypes of the component are preserved. The
component must have no subcomponents and must not already be linked to a model.

Input Arguments
component — Component
component object

Component with no subcomponents, specified as a systemcomposer.arch.Component object.

Version History
Introduced in R2021b

R2022a_plus: createSubsystemBehavior function is not recommended
Not recommended starting in R2022a_plus

The createSubsystemBehavior function is not recommended. Use the
createSimulinkBehavior function instead.

See Also
inlineComponent | createSimulinkBehavior | createArchitectureModel |
createStateflowChartBehavior | extractArchitectureFromSimulink | linkToModel |
isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”

4 Functions

4-174

“Simulate and Deploy Software Architectures”

 createSubsystemBehavior

4-175

createSubGroup
Package: systemcomposer.view

Create subgroup in element group of view

Syntax
subGroup = createSubGroup(elementGroup,subGroupName)

Description
subGroup = createSubGroup(elementGroup,subGroupName) creates a new subgroup
subGroup, named subGroupName within the element group elementGroup of an architecture view.

Note This function cannot be used when a selection query or grouping is defined on the view. To
remove the query, run removeQuery.

Examples

Create Subgroup in View

Open the keyless entry system example and create a view newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see the new view newView.

model.openViews

Create a subgroup myGroup.

group = view.Root.createSubGroup("myGroup")

group =
 ElementGroup with properties:

 Name: 'myGroup'
 UUID: 'cd8a3f23-db62-498f-8d41-d04cb4561e78'
 Elements: []
 SubGroups: [0×0 systemcomposer.view.ElementGroup]

Input Arguments
elementGroup — Element group
element group object

4 Functions

4-176

Element group for view, specified as a systemcomposer.view.ElementGroup object.

subGroupName — Name of subgroup
character vector | string

Name of subgroup, specified as a character vector or string.
Example: "myGroup"
Data Types: char | string

Output Arguments
subGroup — Subgroup
element group object

Subgroup, returned as a systemcomposer.view.ElementGroup object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

 createSubGroup

4-177

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
openViews | createView | getView | deleteView | systemcomposer.view.ElementGroup |
systemcomposer.view.View | getSubGroup | deleteSubGroup | addElement |
removeElement

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-178

createView
Package: systemcomposer.arch

Create architecture view

Syntax
view = createView(model,name)
view = createView(___ ,Name,Value)

Description
view = createView(model,name) creates a new architecture view view for the System
Composer model model with the specified name name.

To delete a view, use the deleteView function.

view = createView(___ ,Name,Value) creates a new view with additional options.

Examples

Create View with Query and Group By

Open the keyless entry system example and create a view. Specify the color as light blue and the
query as all components, and group by the review status.

scKeylessEntrySystem
import systemcomposer.query.*
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("All Components Grouped by Review Status",...
 Color="lightblue",Select=AnyComponent,...
 GroupBy="AutoProfile.BaseComponent.ReviewStatus");

Open the Architecture Views Gallery to see the new view named All Components Grouped by Review
Status.

model.openViews

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

name — Name of view
character vector | string

Name of view, specified as a character vector or string.

 createView

4-179

Example: "All Components Grouped by Review Status"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: view = model.createView("All Components Grouped by Review
Status",Color="lightblue",Select=AnyComponent(),GroupBy="AutoProfile.BaseComp
onent.ReviewStatus")

Select — Selection query
constraint object

Selection query to use to populate the view, specified as a systemcomposer.query.Constraint
object.

A constraint can contain a subconstraint that can be joined with another constraint using AND or OR.
A constraint can be negated using NOT.
Example: view = model.createView("All Components Grouped by Review
Status",Select=HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareCom
ponent")))

Query Objects and Conditions for Constraints

Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasConnector A component has a connector that satisfies the

given subconstraint.
HasPort A component has a port that satisfies the given

subconstraint.
HasInterface A port has an interface that satisfies the given

subconstraint.
HasInterfaceElement An interface has an interface element that

satisfies the given subconstraint.
HasStereotype An architecture element has a stereotype that

satisfies the given subconstraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

4 Functions

4-180

GroupBy — Grouping criteria
cell array of character vectors | array of strings

Grouping criteria, specified as a cell array of character vectors or an array of strings in the form
"<profile>.<stereotype>.<property>". The order of the cell array dictates the order of the
grouping.
Example: view = model.createView("All Components Grouped by Review
Status",GroupBy=["AutoProfile.MechanicalComponent.mass","AutoProfile.Mechanic
alComponent.cost"])

Data Types: char | string

IncludeReferenceModels — Whether to search for reference architectures
true or 1 (default) | false or 0

Whether to search for reference architectures, specified as a logical.
Example: view = model.createView("All Components Grouped by Review
Status",IncludeReferenceModels=false)

Data Types: logical

Color — Color of view
character vector | string

Color of view, specified as a character vector or string that contains the name of the color or an RGB
hexadecimal value.
Example: view = model.createView("All Components Grouped by Review
Status",Color="blue")

Example: view = model.createView("All Components Grouped by Review
Status",Color="#FF00FF")

Data Types: char | string

Output Arguments
view — Architecture view
view object

Architecture view, returned as a systemcomposer.view.View object.

 createView

4-181

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-182

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

 createView

4-183

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | getView | deleteView | openViews |
systemcomposer.view.ElementGroup | getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-184

createViewArchitecture
Package: systemcomposer.arch

(Removed) Create view

Note The createViewArchitecture function has been removed. You can create a view using the
createView function. For further details, see “Compatibility Considerations”.

Syntax
view = createViewArchitecture(model,name)
view = createViewArchitecture(model,name,constraint)
view = createViewArchitecture(model,name,constraint,groupBy)
view = createViewArchitecture(___ ,Name,Value)

Description
view = createViewArchitecture(model,name) creates an empty view with the given name and
default color 'blue'.

view = createViewArchitecture(model,name,constraint) creates a view with the given
name where the contents are populated by finding all components in the model that satisfy the
provided query.

view = createViewArchitecture(model,name,constraint,groupBy) creates a view with
the given name where the contents are populated by finding all components in the model that satisfy
the provided query. The selected components are then grouped by the fully qualified property name.

view = createViewArchitecture(___ ,Name,Value) creates a view with additional options.

Examples

Create View Based on Query and Group By Review Status
scKeylessEntrySystem;
m = systemcomposer.openModel('KeylessEntryArchitecture');

import systemcomposer.query.*;
myQuery = HasStereotype(IsStereotypeDerivedFrom('AutoProfile.SoftwareComponent'));

view = m.createViewArchitecture('Software Review Status',myQuery,...
'AutoProfile.BaseComponent.ReviewStatus','Color','red');

m.openViews;

Input Arguments
model — Architecture model
model object

 createViewArchitecture

4-185

Architecture model, specified as a systemcomposer.arch.Model object.

name — Name of view
character vector

Name of view, specified as a character vector.
Data Types: char

constraint — Query
query constraint object

Query, specified as a systemcomposer.query.Constraint object representing specific conditions.

A constraint can contain a subconstraint that can be joined with another constraint using AND or OR.
A constraint can be negated using NOT.

Query Objects and Conditions for Constraints

Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasConnector A component has a connector that satisfies the

given subconstraint.
HasPort A component has a port that satisfies the given

subconstraint.
HasInterface A port has an interface that satisfies the given

subconstraint.
HasInterfaceElement An interface has an interface element that

satisfies the given subconstraint.
HasStereotype An architecture element has a stereotype that

satisfies the given subconstraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

groupBy — User-defined property
enumeration

User-defined property, specified as an enumeration by which to group components.
Data Types: enum

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

4 Functions

4-186

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: createViewArchitecture(model,'Software Review
Status',myQuery,'AutoProfile.BaseComponent.ReviewStatus','Color','red','Inclu
deReferenceModels',true)

IncludeReferenceModels — Whether to search for reference architectures
false or 0 (default) | true or 1

Whether to search for reference architectures, or to not include referenced architectures, specified
as the comma-separated pair consisting of 'IncludeReferenceModels' and a logical 0 (false) to
not include referenced architectures and 1 (true) to search for referenced architectures.
Example: 'IncludeReferenceModels',true
Data Types: logical

Color — Color of view
character array

Color of view, specified as the comma-separated pair consisting of 'Color' and a character array
that contains the name of the color or an RGB hexadecimal value.
Example: 'Color','blue'
Example: 'Color,'#FF00FF'
Data Types: char

Output Arguments
view — Model architecture view
view architecture object

Model architecture view created based on the specified query and properties, returned as a
systemcomposer.view.ViewArchitecture object.

Version History
Introduced in R2019b

R2021a: createViewArchitecture function has been removed
Errors starting in R2021a

The createViewArchitecture function is removed in R2021a with the introduction of a new set of
views API. For more information on how to create and edit a view using the command line, see
“Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 createViewArchitecture

4-187

createViewComponent
Package: systemcomposer.view

(Removed) Create view component

Note The createViewComponent function has been removed. You can create a view using the
createView function and then add a component using the addElement function. Add a subgroup
with the createSubGroup function. For further details, see “Compatibility Considerations”.

Syntax
viewComp = createViewComponent(object,name)

Description
viewComp = createViewComponent(object,name) creates a new view component with the
provided name.

createViewComponent is a method for the class systemcomposer.view.ViewArchitecture.

Examples

Create View Component

Create view component with context view.

scKeylessEntrySystem
zcModel = systemcomposer.loadModel('KeylessEntryArchitecture');
fobSupplierView = zcModel.createViewArchitecture("FOB Locator System Supplier Breakdown",...
 "Color","lightblue");
supplierD = fobSupplierView.createViewComponent("Supplier D");

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

name — Name of component
character vector

Name of component, specified as a character vector.
Data Types: char

4 Functions

4-188

Output Arguments
viewComp — View component
view component object

View component, returned as a systemcomposer.view.ViewComponent object.

Version History
Introduced in R2019b

R2021a: createViewComponent function has been removed
Errors starting in R2021a

The createViewComponent function is removed in R2021a with the introduction of a new set of
views API. For more information on how to create and edit a view using the command line, see
“Create Architectural Views Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 createViewComponent

4-189

deallocate
Package: systemcomposer.allocation

Delete allocation

Syntax
deallocate(allocScenario,sourceElement,targetElement)

Description
deallocate(allocScenario,sourceElement,targetElement) deletes allocation, if one exists,
between the source element sourceElement and the target element targetElement.

Examples

Create Allocation Set and Deallocate Elements Between Models

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Deallocate components between models.
deallocate(defaultScenario,sourceComp,targetComp);

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocScenario — Allocation scenario
allocation scenario object

4 Functions

4-190

Allocation scenario , specified as a systemcomposer.allocation.AllocationScenario object.

sourceElement — Source element
element object

Source element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

targetElement — Target element
element object

Target element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

 deallocate

4-191

See Also
getAllocation | getAllocatedFrom | allocate | getAllocatedTo | destroy | getScenario |
createAllocationSet

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-192

decreaseExecutionOrder
Package: systemcomposer.arch

Change function execution order to earlier

Syntax
decreaseExecutionOrder(functionObj)

Description
decreaseExecutionOrder(functionObj) decreases execution order of the specified function
functionObj by 1. If the function is at the minimum execution order, the
decreaseExecutionOrder method will fail with a warning.

Examples

Change Execution Order of Software Functions

This example shows the software architecture of a throttle position control system and how to
schedule the execution order of the root level functions.

model = systemcomposer.openModel("ThrottleControlComposition");

Simulate the model to populate it with functions.

sim("ThrottleControlComposition");

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

Decrease the execution order of the third function.

decreaseExecutionOrder(model.Architecture.Functions(3))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'TPS_Primary_read_5ms' }

 decreaseExecutionOrder

4-193

 {'Controller_run_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The third function is now moved up in execution order, executing earlier.

Increase the execution order of the second function.

increaseExecutionOrder(model.Architecture.Functions(2))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The second function is now moved down in execution order, executing later.

Input Arguments
functionObj — Function
function object

Function, specified as a systemcomposer.arch.Function object.

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

4 Functions

4-194

Term Definition Application More Information
software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 decreaseExecutionOrder

4-195

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-196

Version History
Introduced in R2021b

See Also
systemcomposer.createModel | createArchitectureModel | increaseExecutionOrder

Topics
“Modeling Software Architecture of Throttle Position Control System”
“Simulate and Deploy Software Architectures”
“Author Software Architectures”

 decreaseExecutionOrder

4-197

systemcomposer.analysis.deleteInstance
Delete architecture instance

Syntax
systemcomposer.analysis.deleteInstance(instance)

Description
systemcomposer.analysis.deleteInstance(instance) deletes an existing instance.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Delete Architecture Instance

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Instantiate all stereotypes in the profile.
model = systemcomposer.createModel("archModel",true);
instance = instantiate(model.Architecture,"LatencyProfile","NewInstance");

Delete the architecture instance.

4 Functions

4-198

systemcomposer.analysis.deleteInstance(instance);

Input Arguments
instance — Architecture instance
architecture instance object

Architecture instance to be deleted, specified as a
systemcomposer.analysis.ArchitectureInstance object.

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 systemcomposer.analysis.deleteInstance

4-199

Version History
Introduced in R2019a

See Also
instantiate | systemcomposer.analysis.Instance | loadInstance | save | refresh |
update

Topics
“Write Analysis Function”

4 Functions

4-200

deleteScenario
Package: systemcomposer.allocation

Delete allocation scenario

Syntax
deleteScenario(allocSet,name)

Description
deleteScenario(allocSet,name) deletes the allocation scenario in the set allocSet with the
given name name.

Examples

Create Allocation Set and Delete Scenario

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Create a new allocation scenario.
newScenario = createScenario(allocSet,"Scenario 2");

Delete the default allocation scenario.
deleteScenario(allocSet,"Scenario 1");

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocSet — Allocation set
allocation set object

 deleteScenario

4-201

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

name — Name of allocation scenario
character vector | string

Name of allocation scenario, specified as a character vector or string.
Example: "Scenario 1"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
getScenario | createScenario | synchronizeChanges | load | closeAll | find | close

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-202

deleteSubGroup
Package: systemcomposer.view

Delete subgroup in element group of view

Syntax
deleteSubGroup(elementGroup,subGroupName)

Description
deleteSubGroup(elementGroup,subGroupName) deletes the subgroup named subGroupName
within the element group elementGroup of an architecture view.

Examples

Create and Delete Subgroup in View

Open the keyless entry system example and create a view newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see the new view newView.

model.openViews

Create a subgroup myGroup.

group = view.Root.createSubGroup("myGroup");

Delete the subgroup myGroup.

view.Root.deleteSubGroup("myGroup");

Input Arguments
elementGroup — Element group
element group object

Element group for view, specified as a systemcomposer.view.ElementGroup object.

subGroupName — Name of subgroup
character vector | string

Name of subgroup, specified as a character vector or string.
Example: "myGroup"

 deleteSubGroup

4-203

Data Types: char | string

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-204

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
openViews | createView | getView | deleteView | systemcomposer.view.ElementGroup |
systemcomposer.view.View | getSubGroup | createSubGroup | removeElement |
addElement

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 deleteSubGroup

4-205

deleteView
Package: systemcomposer.arch

Delete architecture view

Syntax
deleteView(model,name)

Description
deleteView(model,name) deletes the view name, if it exists, in the specified model model.

Examples

Create and Delete View

Open the keyless entry system example and create a view, newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see newView.

model.openViews

Delete the view and see that it has been deleted.

model.deleteView("newView")

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

name — Name of view
character vector | string

Name of view, specified as a character vector or string.
Example: "All Components Grouped by Review Status"
Data Types: char | string

4 Functions

4-206

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 deleteView

4-207

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

4 Functions

4-208

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | openViews | getView | createView |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 deleteView

4-209

destroy
Package: systemcomposer.arch

Remove model element

Syntax
destroy(element)

Description
destroy(element) removes and destroys the architecture model element element.

Examples

Destroy Component

Create a component, newComponent, then remove it from the model.

model = systemcomposer.createModel("newModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
destroy(newComponent)

Input Arguments
element — Architecture model element
component object | variant component object | architecture port object | connector object | physical
connector object | function object | value type object | data interface object | data element object |
physical domain object | physical interface object | physical element object | function argument object
| service interface object | function element object | property object | view object | element group
object | allocation scenario object | allocation object | parameter object

Architecture model element, specified as one of these objects:

• systemcomposer.arch.Component
• systemcomposer.arch.VariantComponent
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.Connector
• systemcomposer.arch.PhysicalConnector
• systemcomposer.arch.Function
• systemcomposer.ValueType
• systemcomposer.interface.DataInterface
• systemcomposer.interface.DataElement
• systemcomposer.interface.PhysicalDomain

4 Functions

4-210

• systemcomposer.interface.PhysicalInterface
• systemcomposer.interface.PhysicalElement
• systemcomposer.interface.FunctionArgument
• systemcomposer.interface.ServiceInterface
• systemcomposer.interface.FunctionElement
• systemcomposer.profile.Property
• systemcomposer.view.View
• systemcomposer.view.ElementGroup
• systemcomposer.allocation.AllocationScenario
• systemcomposer.allocation.Allocation
• systemcomposer.arch.Parameter

Version History
Introduced in R2019a

See Also
Component | Variant Component | removeElement | removeElement | removeInterface |
deleteView | deleteSubGroup | deleteInstance | removeProfile | removeProperty |
removeStereotype | removeStereotype | deallocate | deleteScenario

 destroy

4-211

systemcomposer.allocation.editor
Open allocation editor

Syntax
systemcomposer.allocation.editor
systemcomposer.allocation.editor(allocSet)
systemcomposer.allocation.editor(allocSetName)

Description
systemcomposer.allocation.editor opens the Allocation Editor.

systemcomposer.allocation.editor(allocSet) opens the Allocation Editor and selects the
allocation set object allocSet.

systemcomposer.allocation.editor(allocSetName) opens the Allocation Editor and selects
the allocation set allocSetName.

Examples

Create Allocation Set and Open in Allocation Editor

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

allocSetName — Allocation set name
character vector | string

4 Functions

4-212

Allocation set name, specified as a character vector or string.
Example: systemcomposer.allocation.editor("PhysicalAllocations")
Data Types: char | string

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createAllocationSet | systemcomposer.allocation.AllocationSet

Topics
“Create and Manage Allocations Programmatically”

 systemcomposer.allocation.editor

4-213

systemcomposer.profile.editor
Open Profile Editor

Syntax
systemcomposer.profile.editor
systemcomposer.profile.editor(profile)
systemcomposer.profile.editor(profileName)

Description
systemcomposer.profile.editor opens the System Composer Profile Editor.

systemcomposer.profile.editor(profile) opens the Profile Editor and selects the profile
object profile.

systemcomposer.profile.editor(profileName) opens the Profile Editor and selects the
profile profileName.

Examples

Open Profile Editor

Create and save a profile, then open the Profile Editor with that profile selected.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
profile.save
systemcomposer.profile.editor(profile)

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

profileName — Profile name
character vector | string

Profile name, specified as a character vector or string.
Example: systemcomposer.profile.editor("LatencyProfile")
Data Types: char | string

4 Functions

4-214

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

 systemcomposer.profile.editor

4-215

See Also
systemcomposer.profile.Profile | loadProfile | open | load | find | save | closeAll |
createProfile

Topics
“Define Profiles and Stereotypes”

4 Functions

4-216

systemcomposer.exportModel
Export model information as MATLAB tables

Syntax
[exportedSet] = systemcomposer.exportModel(modelName)
[exportedSet,errorLog] = systemcomposer.exportModel(modelName)

Description
[exportedSet] = systemcomposer.exportModel(modelName) exports model information for
components, ports, connectors, port interfaces, and requirement links, with a domain field to be
imported into MATLAB tables. For software architectures, the programmatic interface exports
function information. The exported tables have prescribed formats to specify model element
relationships, stereotypes, and properties. For more information on the import structure, see the
importModel function and “Import and Export Architecture Models”.

[exportedSet,errorLog] = systemcomposer.exportModel(modelName) exports model
information to be imported into MATLAB tables with output arguments exportedSet with a
structure of exported tables and errorLog to display export error information.

Examples

Export System Composer Model

To export a model, pass the model name as an argument to the exportModel function. The function
returns a structure containing five tables: components, ports, connections, portInterfaces,
requirementLinks, and parameters with a domain field returned as 'System' for architecture
models and 'Software' for software architecture models.

exportedSet = systemcomposer.exportModel('exMobileRobot')

exportedSet =

 struct with fields:

 components: [3×4 table]
 ports: [3×5 table]
 connections: [1×4 table]
 portInterfaces: [3×9 table]
 requirementLinks: [4×15 table]
 parameters: [6×9 table]
 domain: 'System'

Export Software Architecture Model

To export a software architecture model, pass the model name as an argument to the exportModel
function. The function returns a structure containing seven tables: components, ports,

 systemcomposer.exportModel

4-217

connections, portInterfaces, requirementLinks, parameters, domain as 'Software', and
functions.

exportedSet = systemcomposer.exportModel('mySoftwareArchitectureModel')

exportedSet =

 struct with fields:

 components: [2×5 table]
 ports: [0×4 table]
 connections: [0×4 table]
 portInterfaces: [0×9 table]
 requirementLinks: [0×15 table]
 parameters: [0×9 table]
 domain: 'Software'
 functions: [1×4 table]

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

Output Arguments
exportedSet — Model tables
structure

Model tables, returned as a structure containing tables for components, ports, connections,
portInterfaces, requirementLinks, and parameters, with a domain field returned as
'System' for architecture models, and 'Software' for software architecture models. For software
architectures, model tables include a functions table for exported function information.
Data Types: struct

errorLog — Errors reported during export process
string array

Errors reported during export process, returned as a string array. You can obtain the error text by
calling the disp method on the array of strings. For example, disp(exportLog) is used to obtain
the errors reported as strings in a readable format.
Data Types: string

4 Functions

4-218

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.exportModel

4-219

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
Blocks
Component | Variant Component | Reference Component

Functions
importModel | systemcomposer.exportToVersion |
systemcomposer.updateLinksToReferenceRequirements

Topics
“Import and Export Architecture Models”
“Author Parameters in System Composer Using Parameter Editor”

4 Functions

4-220

systemcomposer.exportToVersion
Export architecture model and dependencies to previous release of System Composer

Syntax
systemcomposer.exportToVersion(modelName,dirName,version)

Description
systemcomposer.exportToVersion(modelName,dirName,version) exports an architecture
model with name modelName and its dependencies to the version of System Composer given by
version. The exported artifacts are created in a directory specified by dirName.

Examples

Create Model Then Export to Previous Version

Create an architecture model, then export that model to a previous version of System Composer.

model = systemcomposer.createModel("OlderVersionModel");
save(model)
systemcomposer.exportToVersion('OlderVersionModel',"OlderVersion","R2021a")

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

dirName — Name of empty directory
character vector | string

Name of empty directory, specified as a character vector or string. You can specify either the relative
path to the directory or the full path.
Example: "Projects/Aero"
Data Types: char | string

version — Version of MATLAB
character vector | string

Version of MATLAB, specified as a character vector or string.
Example: "R2022b"
Data Types: char | string

 systemcomposer.exportToVersion

4-221

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-222

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019b

See Also
Blocks
Component | Variant Component | Reference Component

Functions
exportModel | importModel | systemcomposer.updateLinksToReferenceRequirements

Topics
“Organize System Composer Files in Projects”
“Import and Export Architecture Models”

 systemcomposer.exportToVersion

4-223

systemcomposer.extractArchitectureFromSimulink
Extract architecture from Simulink model

Syntax
systemcomposer.extractArchitectureFromSimulink(model,name)
systemcomposer.extractArchitectureFromSimulink(model,name,Name,Value)

Description
systemcomposer.extractArchitectureFromSimulink(model,name) exports the Simulink
model model to an architecture model name and saves it in the current directory.

systemcomposer.extractArchitectureFromSimulink(model,name,Name,Value) exports
the Simulink model model to an architecture model name and saves it in the current directory with
additional options.

Examples

Extract Architecture of Simulink Model Using System Composer

Export an existing Simulink® model to a System Composer™ architecture model. The algorithmic
sections of the original model are removed and structural information is preserved during this
process. Requirements links, if present, are also preserved.

Convert Simulink Model to System Composer Architecture

System Composer converts structural constructs in a Simulink model to equivalent architecture
model constructs:

• Subsystems to components
• Variant subsystems to variant components
• Bus objects to interfaces
• Referenced models to reference components

Open Model

Open the Simulink model of F-14 Flight Control.

open_system('f14')

4 Functions

4-224

Export Model

Extract an architecture model from the original model.

systemcomposer.extractArchitectureFromSimulink('f14','F14ArchModel');
Simulink.BlockDiagram.arrangeSystem('F14ArchModel');
systemcomposer.openModel('F14ArchModel');

 systemcomposer.extractArchitectureFromSimulink

4-225

Input Arguments
model — Simulink model name
character vector | string

Simulink model name from which to extract the architecture, specified as a character vector or
string. The model must be on the path.
Example: "f14"
Data Types: char | string

name — Architecture model name
character vector | string

Architecture model name, specified as a character vector or string. This model is saved in the current
directory.
Example: "F14ArchModel"
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
systemcomposer.extractArchitectureFromSimulink("f14","F14ArchModel",AutoArran
ge=false,ShowProgress=true)

AutoArrange — Whether to auto-arrange architecture model
true or 1 (default) | false or 0

4 Functions

4-226

Whether to auto-arrange architecture model, specified as a logical.
Example:
systemcomposer.extractArchitectureFromSimulink("f14","F14ArchModel",AutoArran
ge=false)

Data Types: logical

ShowProgress — Whether to show progress bar
false or 0 (default) | true or 1

Whether to show progress bar, specified as a logical. This option is useful for larger models.
Example:
systemcomposer.extractArchitectureFromSimulink("f14","F14ArchModel",ShowProgr
ess=true)

Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 systemcomposer.extractArchitectureFromSimulink

4-227

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
inlineComponent | createSimulinkBehavior | createStateflowChartBehavior |
linkToModel | isReference | Reference Component

Topics
“Extract Architecture from Simulink Model”
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”

4 Functions

4-228

find
Package: systemcomposer.arch

Find architecture model elements using query

Syntax
[paths] = find(model,constraint,Name,Value)
[paths, elements] = find(___)
[elements] = find(___)
[paths] = find(model,constraint,rootArch,Name,Value)

Description
[paths] = find(model,constraint,Name,Value) finds all element paths starting from the root
architecture of the model that satisfy the constraint query, with additional options specified by one
or more name-value arguments.

[paths, elements] = find(___) returns the component elements elements and their paths
that satisfy the constraint query. Follow the syntax above for input arguments. If rootArch is not
provided, then the function finds model elements in the root architecture of the model. The output
argument paths contains a fully qualified named path for each component in elements from the
given root architecture.

[elements] = find(___) finds all component, port, or connector elements elements, that
satisfy the constraint query, with additional options specified by one or more name-value
arguments, which must include 'Port' or 'Connector' for 'ElementType'.

[paths] = find(model,constraint,rootArch,Name,Value) finds all element paths starting
from the specified root architecture rootArch that satisfy the constraint query, with additional
options specified by one or more name-value arguments.

Examples

Find Model Element Paths that Satisfy Query

Import a model and run a query to select architectural elements that have a stereotype based on the
specified subconstraint.
import systemcomposer.query.*;
scKeylessEntrySystem
modelObj = systemcomposer.openModel("KeylessEntryArchitecture");
find(modelObj,HasStereotype(IsStereotypeDerivedFrom("AutoProfile.BaseComponent")),...
 Recurse=true,IncludeReferenceModels=true)

Create a query to find components that contain the letter c in their Name property.
constraint = contains(systemcomposer.query.Property("Name"),"c");
find(modelObj,constraint,Recurse=true,IncludeReferenceModels=true)

 find

4-229

Find Elements in Architecture Model

Find elements in an architecture model based on a System Composer™ query.

Create Model

Create an architecture model with two components.

m = systemcomposer.createModel("exModel");
comps = m.Architecture.addComponent(["c1","c2"]);

Create Profile and Stereotypes

Create a profile and stereotypes for your architecture model.

pf = systemcomposer.profile.Profile.createProfile("mProfile");
b = pf.addStereotype("BaseComp",AppliesTo="Component",Abstract=true);
s = pf.addStereotype("sComp",Parent=b);

Apply Profile and Stereotypes

Apply the profile and stereotypes to your architecture model.

m.Architecture.applyProfile(pf.Name)
comps(1).applyStereotype(s.FullyQualifiedName)

Find the Element

Find the element in your architecture model based on a query.

import systemcomposer.query.*
[p, elem] = find(m, HasStereotype(IsStereotypeDerivedFrom("mProfile.BaseComp")),...
Recurse=true,IncludeReferenceModels=true)

p = 1x1 cell array
 {'exModel/c1'}

elem =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'c1'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [0x0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0x0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [15 15 65 76]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 2.0005
 SimulinkModelHandle: 4.8828e-04
 UUID: 'e251516a-8174-4786-9703-a95aed4223c5'
 ExternalUID: ''

Clean Up

Remove the model and the profile.

4 Functions

4-230

cleanUpFindElementsInModel

Find Ports in Architecture Model

Create a model to query and create two components.
m = systemcomposer.createModel("exModel");
comps = m.Architecture.addComponent(["c1","c2"]);
port = comps(1).Architecture.addPort("cport1","in");

Create a query to find ports that contain the letter c in their Name property.
constraint = contains(systemcomposer.query.Property("Name"),"c");
find(m,constraint,Recurse=true,IncludeReferenceModels=true,ElementType="Port")

Find Architectural Element Paths That Satisfy Query
import systemcomposer.query.*;
scKeylessEntrySystem
modelObj = systemcomposer.openModel("KeylessEntryArchitecture");
find(modelObj,HasStereotype(IsStereotypeDerivedFrom("AutoProfile.BaseComponent")),...
 modelObj.Architecture,Recurse=true,IncludeReferenceModels=true)

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

constraint — Query
query constraint object

Query, specified as a systemcomposer.query.Constraint object representing specific conditions.

A constraint can contain a subconstraint that can be joined with another constraint using AND or OR.
A constraint can be negated using NOT.

 find

4-231

Query Objects and Conditions for Constraints

Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasConnector A component has a connector that satisfies the

given subconstraint.
HasPort A component has a port that satisfies the given

subconstraint.
HasInterface A port has an interface that satisfies the given

subconstraint.
HasInterfaceElement An interface has an interface element that

satisfies the given subconstraint.
HasStereotype An architecture element has a stereotype that

satisfies the given subconstraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

rootArch — Root architecture of model
architecture object | Architecture property of model object

Root architecture of model, specified as a systemcomposer.arch.Architecture object or the
Architecture property of a systemcomposer.arch.Model object.
Example: modelObj.Architecture

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: find(model,constraint,Recurse=true,IncludeReferenceModels=true)

Recurse — Option to recursively search model
true or 1 (default) | false or 0

Option to recursively search model or to only search a specific layer, specified as 1 (true) to
recursively search or 0 (false) to only search the specific layer.
Example: find(model,constraint,Recurse=true)
Data Types: logical

IncludeReferenceModels — Option to search for reference architectures
false or 0 (default) | true or 1

4 Functions

4-232

Option to search for reference architectures, specified as a logical.
Example: find(model,constraint,IncludeReferenceModels=true)
Data Types: logical

ElementType — Option to search by type
"Component" (default) | "Port" | "Connector"

Option to search by type, specified as one of these types

• "Component" to find components to satisfy the query
• "Port" to find ports to satisfy the query
• "Connector' to find connectors to satisfy the query

Example: find(model,constraint,ElementType="Port")
Data Types: char | string

Output Arguments
paths — Element paths
cell array of character vectors

Element paths, returned as a cell array of character vectors that satisfy constraint.
Data Types: char

elements — Elements
element objects

Elements, returned as systemcomposer.arch.Element objects that satisfy constraint.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 find

4-233

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-234

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 find

4-235

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019a

See Also
systemcomposer.query.Constraint | createView | lookup | getQualifiedName |
findElementsOfType | findElementsWithStereotype | findElementsWithProperty |
findElementsWithInterface

Topics
“Create Architectural Views Programmatically”

4 Functions

4-236

systemcomposer.profile.Stereotype.find
Find stereotype by name

Syntax
stereotype = systemcomposer.profile.Stereotype.find(name)

Description
stereotype = systemcomposer.profile.Stereotype.find(name) finds a stereotype by
name.

Examples

Find Stereotype

Find a stereotype in the small UAV (unmanned aerial vehicle) model.

scExampleSmallUAV
stereotype = systemcomposer.profile.Stereotype.find("UAVComponent.OnboardElement")

stereotype =
 Stereotype with properties:

 Name: 'OnboardElement'
 Description: 'Represents the base component of UAVComponent'
 Parent: [0x0 systemcomposer.profile.Stereotype]
 AppliesTo: 'Component'
 Abstract: 0
 Icon: 'network'
 ComponentHeaderColor: [210 210 210]
 ConnectorLineColor: [168 168 168]
 ConnectorLineStyle: 'Default'
 FullyQualifiedName: 'UAVComponent.OnboardElement'
 Profile: [1x1 systemcomposer.profile.Profile]
 OwnedProperties: [1x3 systemcomposer.profile.Property]
 Properties: [1x3 systemcomposer.profile.Property]

Input Arguments
name — Name of stereotype
character vector | string

Name of stereotype, specified as a character vector or string in the form
"<profile>.<stereotype>".
Data Types: char | string

 systemcomposer.profile.Stereotype.find

4-237

Output Arguments
stereotype — Found stereotype
stereotype object

Found stereotype, returned as a systemcomposer.profile.Stereotype object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

4 Functions

4-238

Version History
Introduced in R2019a

See Also
addStereotype | removeStereotype | getStereotype | getDefaultStereotype |
setDefaultStereotype

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”
“Modeling System Architecture of Small UAV”

 systemcomposer.profile.Stereotype.find

4-239

systemcomposer.profile.Profile.find
Find profile by name

Syntax
profile = systemcomposer.profile.Profile.find
profile = systemcomposer.profile.Profile.find(profileName)

Description
profile = systemcomposer.profile.Profile.find finds all open profiles.

profile = systemcomposer.profile.Profile.find(profileName) finds a profile by the
specified name, profileName.

Examples

Find Profile

Create a profile for latency characteristics and save it.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Find the profile by name.

profileFound = systemcomposer.profile.Profile.find("LatencyProfile")

profileFound =

 Profile with properties:

 Name: 'LatencyProfile'
 FriendlyName: ''

4 Functions

4-240

 Description: ''
 Stereotypes: [1×5 systemcomposer.profile.Stereotype]

Input Arguments
profileName — Name of profile
character vector | string

Name of profile, specified as a character vector or string. Profile must be available on the MATLAB
path with a .xml extension.
Example: "LatencyProfile"
Data Types: char | string

Output Arguments
profile — Found profile
profile object | array of profile objects

Found profile or profiles, returned as a systemcomposer.profile.Profile object or an array of
systemcomposer.profile.Profile objects.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

 systemcomposer.profile.Profile.find

4-241

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
systemcomposer.profile.Profile | open | editor | save | close | closeAll | load |
createProfile

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

4 Functions

4-242

systemcomposer.allocation.AllocationSet.find
Find loaded allocation set

Syntax
allocSet = systemcomposer.allocation.AllocationSet.find(name)

Description
allocSet = systemcomposer.allocation.AllocationSet.find(name) finds a loaded
allocation set in the global name space with the given name name.

Examples

Create Allocation Set and Find the Allocation Set

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Find the allocation set.
allocSetFind = systemcomposer.allocation.AllocationSet.find("MyNewAllocation")

allocSetFind =

 AllocationSet with properties:

 Name: 'MyNewAllocation'
 Description: ''
 Scenarios: [1×1 systemcomposer.allocation.AllocationScenario]
 Dirty: 1
 NeedsRefresh: 0
 UUID: '96e34f0d-fceb-4fb0-872d-2e588308d0e9'
 SourceModel: [1×1 systemcomposer.arch.Model]
 TargetModel: [1×1 systemcomposer.arch.Model]

Input Arguments
name — Name of allocation set
character vector | string

Name of allocation set, specified as a character vector or string.
Example: "MyNewAllocation"

 systemcomposer.allocation.AllocationSet.find

4-243

Data Types: char | string

Output Arguments
allocSet — Allocation set
allocation set object

Allocation set, returned as a systemcomposer.allocation.AllocationSet object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
save | load | close | closeAll | synchronizeChanges | getScenario | createScenario |
deleteScenario

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-244

findElementsOfType
Package: systemcomposer.query

Find all elements of specific type

Syntax
elements = findElementsOfType(containerObj,kind)
elements = findElementsOfType(containerObj,kind,Name,Value)

Description
elements = findElementsOfType(containerObj,kind) finds all elements elements of the
type kind.

elements = findElementsOfType(containerObj,kind,Name,Value) finds all elements of a
type with additional options specified by one or more name-value arguments.

Examples

Find Elements Using Query Programmatic Interfaces

Use functions in the System Composer™ query package to filter elements in a model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Load the model and the profile.

sysModel = systemcomposer.loadModel('mBasicModel');
basicProfile = systemcomposer.loadProfile('mProfile');

Find all components in the model.

allComps = findElementsOfType(sysModel,"Component")

Find all ports in the model.

allPorts = findElementsOfType(sysModel,"Port")

Find all stereotypes in the model.

allStereotypes = findElementsOfType(basicProfile,"Stereotype")

Find all interfaces in the model.

allInterfaces = findElementsOfType(sysModel,"Interface")

Find components in the model with a name containing "c1".

nameComponents = findElementsWithProperty(sysModel,"Component","Name","c1","contains")

 findElementsOfType

4-245

Find all stereotypes in the profile with a name containing "BasePort".

basePortStereotype = findElementsWithProperty(basicProfile,"Stereotype","Name","BasePort","eq")

Find all components in the model using the stereotype "BasePort".

basePorts = findElementsWithStereotype(sysModel,"Port",basePortStereotype)

Find all elements using the first two found interfaces.

portsUsingInterfaces = findElementsWithInterface(sysModel,"Port",[allInterfaces(1) allInterfaces(2)])

Input Arguments
containerObj — Container object
model object | dictionary object | profile object

Container object, specified as one of these options:

• systemcomposer.arch.Model
• systemcomposer.interface.Dictionary
• systemcomposer.profile.Profile

kind — Element type
"Component" | "Port" | "Connector" | "Interface" | "InterfaceElement" | "Stereotype"

Element type, specified as one of these options:

• "Component"
• "Port"
• "Connector"
• "Interface"
• "InterfaceElement"
• "Stereotype"

Data Types: string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: allComps =
systemcomposer.query.findElementsOfType(sysModel,"Component",NegateResult=tru
e,IncludeReferences=false)

NegateResult — Whether to negate query result
false or 0 (default) | true or 1

Whether to negate query result, specified as a logical.

4 Functions

4-246

Data Types: logical

IncludeReferences — Option to search through reference architectures
true or 1 (default) | false or 0

Option to search through reference architectures, specified as a logical.
Data Types: logical

Output Arguments
elements — Elements found
array of component objects | array of port objects | array of connector objects | array of data interface
objects | array of data element objects | array of stereotype objects

Elements found, returned as an array of these objects:

• systemcomposer.arch.Component
• systemcomposer.arch.ComponentPort
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.Connector
• systemcomposer.interface.DataInterface
• systemcomposer.interface.DataElement
• systemcomposer.profile.Stereotype

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 findElementsOfType

4-247

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-248

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 findElementsOfType

4-249

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2023a

See Also
find | findElementsWithStereotype | findElementsWithProperty |
findElementsWithInterface

Topics
“Create Architectural Views Programmatically”

4 Functions

4-250

findElementsWithStereotype
Package: systemcomposer.query

Find all elements with stereotype

Syntax
elements = findElementsWithStereotype(containerObj,kind,stereotypes)
elements = findElementsWithStereotype(___ ,Name,Value)

Description
elements = findElementsWithStereotype(containerObj,kind,stereotypes) finds all
elements elements of type kind with one of these stereotypes specified by stereotypes applied.

elements = findElementsWithStereotype(___ ,Name,Value) finds all elements with
stereotypes with additional options specified by one or more name-value arguments.

Examples

Find Elements Using Query Programmatic Interfaces

Use functions in the System Composer™ query package to filter elements in a model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Load the model and the profile.

sysModel = systemcomposer.loadModel('mBasicModel');
basicProfile = systemcomposer.loadProfile('mProfile');

Find all components in the model.

allComps = findElementsOfType(sysModel,"Component")

Find all ports in the model.

allPorts = findElementsOfType(sysModel,"Port")

Find all stereotypes in the model.

allStereotypes = findElementsOfType(basicProfile,"Stereotype")

Find all interfaces in the model.

allInterfaces = findElementsOfType(sysModel,"Interface")

Find components in the model with a name containing "c1".

nameComponents = findElementsWithProperty(sysModel,"Component","Name","c1","contains")

 findElementsWithStereotype

4-251

Find all stereotypes in the profile with a name containing "BasePort".

basePortStereotype = findElementsWithProperty(basicProfile,"Stereotype","Name","BasePort","eq")

Find all components in the model using the stereotype "BasePort".

basePorts = findElementsWithStereotype(sysModel,"Port",basePortStereotype)

Find all elements using the first two found interfaces.

portsUsingInterfaces = findElementsWithInterface(sysModel,"Port",[allInterfaces(1) allInterfaces(2)])

Input Arguments
containerObj — Container object
model object | dictionary object | profile object

Container object, specified as one of these options:

• systemcomposer.arch.Model
• systemcomposer.interface.Dictionary
• systemcomposer.profile.Profile

kind — Element type
"Component" | "Port" | "Connector" | "Interface"

Element type, specified as one of these options:

• "Component"
• "Port"
• "Connector"
• "Interface"

Data Types: string

stereotypes — stereotypes
array of stereotype objects

Stereotypes, specified as an array of systemcomposer.profile.Stereotype objects.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: basePorts =
systemcomposer.query.findElementsWithStereotype(sysModel,"Port",basePortStere
otype,NegateResult=true,IncludeReferences=false)

NegateResult — Whether to negate query result
false or 0 (default) | true or 1

4 Functions

4-252

Whether to negate query result, specified as a logical.
Data Types: logical

IncludeReferences — Option to search through reference architectures
true or 1 (default) | false or 0

Option to search through reference architectures, specified as a logical.
Data Types: logical

Output Arguments
elements — Elements found
array of component objects | array of port objects | array of connector objects | array of data interface
objects | array of data element objects | array of stereotype objects

Elements found, returned as an array of these objects:

• systemcomposer.arch.Component
• systemcomposer.arch.ComponentPort
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.Connector
• systemcomposer.interface.DataInterface
• systemcomposer.interface.DataElement
• systemcomposer.profile.Stereotype

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 findElementsWithStereotype

4-253

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-254

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 findElementsWithStereotype

4-255

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2023a

See Also
find | findElementsOfType | findElementsWithProperty | findElementsWithInterface

Topics
“Create Architectural Views Programmatically”

4 Functions

4-256

findElementsWithProperty
Package: systemcomposer.query

Find all elements with property value

Syntax
elements = findElementsWithProperty(containerObj,kind,propertyName,
propertyValue,propertyOperand)
elements = findElementsWithProperty(___ ,Name,Value)

Description
elements = findElementsWithProperty(containerObj,kind,propertyName,
propertyValue,propertyOperand) finds all elements elements of type kind, with the property
name propertyName, value propertyValue, or operand propertyOperand.

elements = findElementsWithProperty(___ ,Name,Value) finds all elements with properties
with additional options specified by one or more name-value arguments.

Examples

Find Elements Using Query Programmatic Interfaces

Use functions in the System Composer™ query package to filter elements in a model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Load the model and the profile.

sysModel = systemcomposer.loadModel('mBasicModel');
basicProfile = systemcomposer.loadProfile('mProfile');

Find all components in the model.

allComps = findElementsOfType(sysModel,"Component")

Find all ports in the model.

allPorts = findElementsOfType(sysModel,"Port")

Find all stereotypes in the model.

allStereotypes = findElementsOfType(basicProfile,"Stereotype")

Find all interfaces in the model.

allInterfaces = findElementsOfType(sysModel,"Interface")

Find components in the model with a name containing "c1".

 findElementsWithProperty

4-257

nameComponents = findElementsWithProperty(sysModel,"Component","Name","c1","contains")

Find all stereotypes in the profile with a name containing "BasePort".

basePortStereotype = findElementsWithProperty(basicProfile,"Stereotype","Name","BasePort","eq")

Find all components in the model using the stereotype "BasePort".

basePorts = findElementsWithStereotype(sysModel,"Port",basePortStereotype)

Find all elements using the first two found interfaces.

portsUsingInterfaces = findElementsWithInterface(sysModel,"Port",[allInterfaces(1) allInterfaces(2)])

Input Arguments
containerObj — Container object
model object | dictionary object | profile object

Container object, specified as one of these options:

• systemcomposer.arch.Model
• systemcomposer.interface.Dictionary
• systemcomposer.profile.Profile

kind — Element type
"Component" | "Port" | "Connector" | "Interface" | "InterfaceElement" | "Stereotype"

Element type, specified as one of these options:

• "Component"
• "Port"
• "Connector"
• "Interface"
• "InterfaceElement"
• "Stereotype"

Data Types: string

propertyName — Property name
string

Property name, specified as a string.
Data Types: string

propertyValue — Property value
numeric | string | logical | value object

Property value, specified as a numeric, string, logical, or systemcomposer.query.Value object.
Data Types: string | numeric | logical

4 Functions

4-258

propertyOperand — Property operand
"eq" | "contains" | "lt" | "gt" | "ge" | "le" | "ne"

Property operand, specified as one of these options:

• eq — Equals
• contains — Contains
• lt — Less than
• gt — Greater than
• ge — Greater than or equal to
• le — Less than or equal to
• ne — Not equal to

Data Types: string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: basePortStereotype =
systemcomposer.query.findElementsWithProperty(basicProfile,"Stereotype","Name
","BasePort","eq",NegateResult=true,IncludeReferences=false,UseEvaluatedValue
=false)

NegateResult — Whether to negate query result
false or 0 (default) | true or 1

Whether to negate query result, specified as a logical.
Data Types: logical

IncludeReferences — Option to search through reference architectures
true or 1 (default) | false or 0

Option to search through reference architectures, specified as a logical.
Data Types: logical

UseEvaluatedValue — Whether to evaluate value
true or 1 (default) | false or 0

Whether to evaluate value, specified as a logical.
Data Types: logical

Output Arguments
elements — Elements found
array of component objects | array of port objects | array of connector objects | array of data interface
objects | array of data element objects | array of stereotype objects

 findElementsWithProperty

4-259

Elements found, returned as an array of these objects:

• systemcomposer.arch.Component
• systemcomposer.arch.ComponentPort
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.Connector
• systemcomposer.interface.DataInterface
• systemcomposer.interface.DataElement
• systemcomposer.profile.Stereotype

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-260

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 findElementsWithProperty

4-261

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-262

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2023a

See Also
find | findElementsOfType | findElementsWithStereotype | findElementsWithInterface

Topics
“Create Architectural Views Programmatically”

 findElementsWithProperty

4-263

findElementsWithInterface
Package: systemcomposer.query

Find all elements with type set by interface

Syntax
elements = findElementsWithInterface(containerObj,kind,interfaces)
elements = findElementsWithInterface(___ ,Name,Value)

Description
elements = findElementsWithInterface(containerObj,kind,interfaces) finds all
elements elements of type kind whose type is set by one of the specified interfaces interfaces.

elements = findElementsWithInterface(___ ,Name,Value) finds all elements whose type is
set by one of the specified interfaces with additional options specified by one or more name-value
arguments

Examples

Find Elements Using Query Programmatic Interfaces

Use functions in the System Composer™ query package to filter elements in a model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Load the model and the profile.

sysModel = systemcomposer.loadModel('mBasicModel');
basicProfile = systemcomposer.loadProfile('mProfile');

Find all components in the model.

allComps = findElementsOfType(sysModel,"Component")

Find all ports in the model.

allPorts = findElementsOfType(sysModel,"Port")

Find all stereotypes in the model.

allStereotypes = findElementsOfType(basicProfile,"Stereotype")

Find all interfaces in the model.

allInterfaces = findElementsOfType(sysModel,"Interface")

Find components in the model with a name containing "c1".

4 Functions

4-264

nameComponents = findElementsWithProperty(sysModel,"Component","Name","c1","contains")

Find all stereotypes in the profile with a name containing "BasePort".

basePortStereotype = findElementsWithProperty(basicProfile,"Stereotype","Name","BasePort","eq")

Find all components in the model using the stereotype "BasePort".

basePorts = findElementsWithStereotype(sysModel,"Port",basePortStereotype)

Find all elements using the first two found interfaces.

portsUsingInterfaces = findElementsWithInterface(sysModel,"Port",[allInterfaces(1) allInterfaces(2)])

Input Arguments
containerObj — Container object
model object | dictionary object

Container object, specified as one of these options:

• systemcomposer.arch.Model
• systemcomposer.interface.Dictionary

kind — Element type
"Port" | "InterfaceElement"

Element type, specified as one of these options:

• "Port"
• "InterfaceElement"

Data Types: string

interfaces — Interfaces
array of data interface objects

Interfaces, specified as an array of systemcomposer.interface.DataInterface objects.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: portsUsingInterfaces =
systemcomposer.query.findElementsWithInterface(sysModel,"Port",
[allInterfaces(1)
allInterfaces(2)],NegateResult=true,IncludeReferences=false)

NegateResult — Whether to negate query result
false or 0 (default) | true or 1

 findElementsWithInterface

4-265

Whether to negate query result, specified as a logical.
Data Types: logical

IncludeReferences — Option to search through reference architectures
true or 1 (default) | false or 0

Option to search through reference architectures, specified as a logical.
Data Types: logical

Output Arguments
elements — Elements found
array of component objects | array of port objects | array of connector objects | array of data interface
objects | array of data element objects | array of stereotype objects

Elements found, returned as an array of these objects:

• systemcomposer.arch.Component
• systemcomposer.arch.ComponentPort
• systemcomposer.arch.ArchitecturePort
• systemcomposer.arch.Connector
• systemcomposer.interface.DataInterface
• systemcomposer.interface.DataElement
• systemcomposer.profile.Stereotype

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-266

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 findElementsWithInterface

4-267

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-268

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2023a

See Also
find | findElementsOfType | findElementsWithStereotype | findElementsWithProperty

Topics
“Create Architectural Views Programmatically”

 findElementsWithInterface

4-269

getActiveChoice
Package: systemcomposer.arch

Get active choice on variant component

Syntax
choice = getActiveChoice(variantComponent)

Description
choice = getActiveChoice(variantComponent) finds which choice is active for the variant
component.

Examples

Get Active Variant Choice

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, set the active choice, and get the active choice.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);
setActiveChoice(variant,compList(2));
comp = getActiveChoice(variant)

comp =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'Choice2'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [0x0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0x0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [15 15 65 76]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 218.0010
 SimulinkModelHandle: 0.0012
 UUID: '62caf338-5d9d-48ad-b3c0-d3b0340d598f'
 ExternalUID: ''

4 Functions

4-270

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

Output Arguments
choice — Chosen variant
component object

Chosen variant, returned as a systemcomposer.arch.Component object.

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
addChoice | getChoices | setActiveChoice | Variant Component

Topics
“Create Variants”

 getActiveChoice

4-271

getAllocatedFrom
Package: systemcomposer.allocation

Get allocation source

Syntax
sourceElements = getAllocatedFrom(allocScenario,targetElement)

Description
sourceElements = getAllocatedFrom(allocScenario,targetElement) gets all allocated
source elements from which a target element targetElement is allocated.

Examples

Allocate from Source Component

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Get allocated from source component allocated to target component.
sourceElement = getAllocatedFrom(defaultScenario,targetComp)

sourceElement =

 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1×1 systemcomposer.arch.Architecture]
 Name: 'Source_Component'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [0×0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0×0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1×1 systemcomposer.arch.Architecture]
 Position: [15 15 65 76]

4 Functions

4-272

 Model: [1×1 systemcomposer.arch.Model]
 SimulinkHandle: 2.0001
 SimulinkModelHandle: 1.2207e-04
 UUID: 'c5ab7c89-3ebc-4a19-934b-9b0f473a0737'
 ExternalUID: ''

Input Arguments
allocScenario — Allocation scenario
allocation scenario object

Allocation scenario , specified as a systemcomposer.allocation.AllocationScenario object.

targetElement — Target element
element object

Target element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

Output Arguments
sourceElements — Source elements
array of element objects

Source elements from which specified target element is allocated, returned as an array of
systemcomposer.arch.Element objects.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

 getAllocatedFrom

4-273

Term Definition Application More Information
allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
getAllocatedTo | allocate | deallocate

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-274

getAllocatedTo
Package: systemcomposer.allocation

Get allocation target

Syntax
targetElements = getAllocatedTo(allocScenario,sourceElement)

Description
targetElements = getAllocatedTo(allocScenario,sourceElement) gets all allocated
target elements to which the specified source element sourceElement is allocated.

Examples

Allocate to Target Component

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Get allocated to target component allocated from source component.
targetElement = getAllocatedTo(defaultScenario,sourceComp)

targetElement =

 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1×1 systemcomposer.arch.Architecture]
 Name: 'Target_Component'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [0×0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0×0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1×1 systemcomposer.arch.Architecture]
 Position: [15 15 65 76]

 getAllocatedTo

4-275

 Model: [1×1 systemcomposer.arch.Model]
 SimulinkHandle: 5.0001
 SimulinkModelHandle: 3.0001
 UUID: '15b4e0ba-f236-4f59-9d30-b46cf170cbda'
 ExternalUID: ''

Input Arguments
allocScenario — Allocation scenario
allocation scenario object

Allocation scenario , specified as a systemcomposer.allocation.AllocationScenario object.

sourceElement — Source element
element object

Source element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

Output Arguments
targetElements — Target elements
array of element objects

Target elements to which source element is allocated, specified as an array of
systemcomposer.arch.Element objects.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

4 Functions

4-276

Term Definition Application More Information
allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
allocate | getAllocatedFrom | deallocate

Topics
“Create and Manage Allocations Programmatically”

 getAllocatedTo

4-277

getAllocation
Package: systemcomposer.allocation

Get allocation between source and target elements

Syntax
allocation = getAllocation(allocScenario,sourceElement,targetElement)

Description
allocation = getAllocation(allocScenario,sourceElement,targetElement) gets the
allocation, if one exists, between the source element sourceElement and the target element
targetElement.

Examples

Get Allocation Between Source and Target Components

Create two new models with a component each.

mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.

allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.

defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.

allocation = allocate(defaultScenario,sourceComp,targetComp);

Get the allocation between the source component and the target component.

allocation = getAllocation(defaultScenario,sourceComp,targetComp)

allocation =

 Allocation with properties:

 Source: [1×1 systemcomposer.arch.Component]
 Target: [1×1 systemcomposer.arch.Component]

4 Functions

4-278

 Scenario: [1×1 systemcomposer.allocation.AllocationScenario]
 UUID: 'd83d692d-03fa-4186-977c-ce31b9de9630'

Input Arguments
allocScenario — Allocation scenario
allocation scenario object

Allocation scenario , specified as a systemcomposer.allocation.AllocationScenario object.

sourceElement — Source element
element object

Source element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

targetElement — Target element
element object

Target element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

Output Arguments
allocation — Allocation
allocation object

Allocation between source element and target element, returned as a
systemcomposer.allocation.Allocation object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

 getAllocation

4-279

Term Definition Application More Information
allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
getAllocatedTo | getAllocatedFrom | deallocate | allocate

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-280

getChoices
Package: systemcomposer.arch

Get available choices in variant component

Syntax
compList = getChoices(variantComponent)

Description
compList = getChoices(variantComponent) returns the list of choices available for a variant
component.

Examples

Get First Variant Choice

Create a model, get the root architecture, create a one variant component, add two choices for the
variant component, and get the first choice.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);
choices = getChoices(variant);
variantChoice = choices(1)

variantChoice =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'Choice1'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [0x0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0x0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [15 15 65 76]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 217.0012
 SimulinkModelHandle: 0.0013
 UUID: 'ddc085f5-07a6-48bc-8db3-b74aca226693'
 ExternalUID: ''

 getChoices

4-281

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

Output Arguments
compList — Choices available for variant component
array of component objects

Choices available for variant component, returned as an array of
systemcomposer.arch.Component objects.

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
addChoice | getActiveChoice | setActiveChoice | Variant Component

Topics
“Create Variants”

4 Functions

4-282

getCondition
Package: systemcomposer.arch

Return variant control on choice within variant component

Syntax
expression = getCondition(variantComponent,choice)

Description
expression = getCondition(variantComponent,choice) gets the variant control condition
for the choice choice on the variant component variantComponent to choose the active variant
choice. If the condition is met on a variant choice, that variant choice becomes the active choice on
the variant component.

Examples

Get Variant Control Condition

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, set a condition on one variant choice to choose the active variant choice, and get
the condition.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
mode = 1;
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);
setCondition(variant,compList(2),"mode == 2");
exp = getCondition(variant,compList(2))

exp =
'mode == 2'

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

choice — Choice in variant component
component object

Choice in variant component, specified as a systemcomposer.arch.Component object.

 getCondition

4-283

Output Arguments
expression — Control string
character vector

Control string that controls the selection of the particular choice, returned as a character vector.
Data Types: char

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
makeVariant | setActiveChoice | setCondition | addVariantComponent | Variant Component

Topics
“Create Variants”

4 Functions

4-284

getDefaultElementStereotype
Package: systemcomposer.profile

Get default stereotype for elements

Syntax
stereotype = getDefaultElementStereotype(stereotype,elementType)

Description
stereotype = getDefaultElementStereotype(stereotype,elementType) gets the default
stereotype stereotype of the child elements whose parent element of type elementType has the
stereotype stereotype applied.

Examples

Get Default Component Stereotype

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Specify the LatencyProfile.NodeLatency stereotype as a component stereotype. Set the default
component stereotype.
nodeLatency.AppliesTo = "Component";
nodeLatency.setDefaultElementStereotype("Component","LatencyProfile.NodeLatency")

Get the default component stereotype on nodeLatency.
stereotype = getDefaultElementStereotype(nodeLatency,"Component")

stereotype =

 Stereotype with properties:

 getDefaultElementStereotype

4-285

 Name: 'NodeLatency'
 Description: ''
 Parent: [1×1 systemcomposer.profile.Stereotype]
 AppliesTo: 'Component'
 Abstract: 0
 Icon: 'default'
 ComponentHeaderColor: [210 210 210]
 ConnectorLineColor: [168 168 168]
 ConnectorLineStyle: 'Default'
 FullyQualifiedName: 'LatencyProfile.NodeLatency'
 Profile: [1×1 systemcomposer.profile.Profile]
 OwnedProperties: [1×1 systemcomposer.profile.Property]
 Properties: [1×3 systemcomposer.profile.Property]

Input Arguments
elementType — Element type
"Component" | "Port" | "Connector" | "Interface" | "Function"

Element type, specified as "Component", "Port", "Connector", "Interface", or "Function".
The element type "Function" is only available for software architectures.
Data Types: char | string

stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

Output Arguments
stereotype — Default stereotype
stereotype object

Default stereotype, returned as a systemcomposer.profile.Stereotype object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-286

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getDefaultElementStereotype

4-287

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2021b

See Also
applyStereotype | removeStereotype | setDefaultElementStereotype

Topics
“Define Profiles and Stereotypes”

4 Functions

4-288

getDefaultStereotype
Package: systemcomposer.profile

Get default stereotype for profile

Syntax
stereotype = getDefaultStereotype(profile)

Description
stereotype = getDefaultStereotype(profile) gets the default stereotype for a profile.

Examples

Get Default Stereotype

Create a profile for latency characteristics.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileA");

connLatency = profile.addStereotype("ConnectorLatency",AppliesTo="Connector");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",AppliesTo="Component");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",AppliesTo="Port");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

Set the default stereotype, then get the default stereotype.

profile.setDefaultStereotype("NodeLatency");
default = getDefaultStereotype(profile)

default =
 Stereotype with properties:

 Name: 'NodeLatency'
 Description: ''
 Parent: [0x0 systemcomposer.profile.Stereotype]
 AppliesTo: 'Component'
 Abstract: 0
 Icon: ''
 ComponentHeaderColor: [210 210 210]
 ConnectorLineColor: [168 168 168]
 ConnectorLineStyle: 'Default'
 FullyQualifiedName: 'LatencyProfileA.NodeLatency'
 Profile: [1x1 systemcomposer.profile.Profile]

 getDefaultStereotype

4-289

 OwnedProperties: [1x1 systemcomposer.profile.Property]
 Properties: [1x1 systemcomposer.profile.Property]

Close the profile to rerun this example.

profile.close(true)

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

Output Arguments
stereotype — Default stereotype
stereotype object

Default stereotype, returned as a systemcomposer.profile.Stereotype object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

4 Functions

4-290

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
createProfile | setDefaultStereotype | addStereotype | getStereotype |
removeStereotype

Topics
“Create a Profile and Add Stereotypes”

 getDefaultStereotype

4-291

getDestinationElement
Package: systemcomposer.arch

Gets data elements selected on destination port for connection

Syntax
selectedElems = getDestinationElement(connector)

Description
selectedElems = getDestinationElement(connector) gets the selected data elements on a
destination port for a connection.

Examples

Get Data Element on Destination Port of Connection

Get the selected element on the destination port for a connection.

Create a model and get its root architecture.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Add a component, create an output port on the component, create an output port on the architecture.
and extract both component port objects.

newComponent = addComponent(rootArch,"Component2");
outPortComp = addPort(newComponent.Architecture,...
"testSig2","out");
outPortArch = addPort(rootArch,"testSig2","out");
compSrcPort = getPort(newComponent,"testSig2");
archDestPort = getPort(rootArch,"testSig2");

Add data interface, create data element, and set the data interface on the architecture port.

interface = arch.InterfaceDictionary.addInterface("interface2");
interface.addElement("x");
archDestPort.setInterface(interface);

Connect the ports and get the destination element of the connector.

conns = connect(compSrcPort,archDestPort,DestinationElement="x");
elem = getDestinationElement(conns)

elem =

 1×1 cell array

4 Functions

4-292

 {'x'}

Input Arguments
connector — Connection between ports
connector object

Connection between ports, specified as a systemcomposer.arch.Connector object.

Output Arguments
selectedElems — Selected data element names
character vector

Selected data element names, returned as a character vector.
Data Types: char

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 getDestinationElement

4-293

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

4 Functions

4-294

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 getDestinationElement

4-295

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2020b

See Also
createModel | addPort | getPort | addComponent | addElement | addInterface |
setInterface | connect | getSourceElement | Component

Topics
“Specify Source Element or Destination Element for Ports”

4 Functions

4-296

getElement
Package: systemcomposer.interface

Get object for element

Syntax
element = getElement(interface,name)

Description
element = getElement(interface,name) gets the object for the element with name name in the
interface specified by interface.

Examples

Get Object for Named Data Element

Add a data interface newInterface to the interface dictionary of the model. Add a data element
newElement with data type double. Then, get the object for the data element.

arch = systemcomposer.createModel("newModel",true);
interface = addInterface(arch.InterfaceDictionary,"newInterface");
addElement(interface,"newElement",DataType="double");
element = getElement(interface,"newElement")

element =

 DataElement with properties:

 Interface: [1×1 systemcomposer.interface.DataInterface]
 Name: 'newElement'
 Type: [1×1 systemcomposer.ValueType]
 UUID: '2d267175-33c2-43a9-be41-a1be2774a3cf'
 ExternalUID: ''

Get Object for Named Physical Element

Add a physical interface newInterface to the interface dictionary of the model. Add a physical
element newElement with domain type electrical.electrical. Then, get the object for the
physical element.
arch = systemcomposer.createModel("newModel",true);
interface = addPhysicalInterface(arch.InterfaceDictionary,"newInterface");
addElement(interface,"newElement",Type="electrical.electrical");
element = getElement(interface,"newElement")

element =

 PhysicalElement with properties:

 getElement

4-297

 Name: 'newElement'
 Type: [1×1 systemcomposer.interface.PhysicalDomain]
 Interface: [1×1 systemcomposer.interface.PhysicalInterface]
 UUID: '25b71628-e904-451a-96ff-f185c5ec60a4'
 ExternalUID: ''

Input Arguments
interface — Interface
data interface object | physical interface object | service interface object

Interface, specified as a systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

name — Element name
character vector | string

Element name, specified as a character vector or string. An element name must be a valid MATLAB
variable name.
Data Types: char | string

Output Arguments
element — Element
data element object | physical element object | function element object

Element, returned as a systemcomposer.interface.DataElement,
systemcomposer.interface.PhysicalElement, or
systemcomposer.interface.FunctionElement object.

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

4 Functions

4-298

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 getElement

4-299

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
addElement | removeElement | createDictionary | getInterfaceNames | getInterface |
linkDictionary | getSourceElement | getDestinationElement | unlinkDictionary

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-300

getEvaluatedParameterValue
Package: systemcomposer.arch

Get evaluated value of parameter from element

Syntax
[value,unit] = getEvaluatedParameterValue(element,paramName)

Description
[value,unit] = getEvaluatedParameterValue(element,paramName) gets the evaluated
value of the parameter, and, optionally, units unit specified on the architectural element, element.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

 getEvaluatedParameterValue

4-301

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

4 Functions

4-302

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

 getEvaluatedParameterValue

4-303

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

4 Functions

4-304

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

 getEvaluatedParameterValue

4-305

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

4 Functions

4-306

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
element — Architectural element
architecture object | component object | variant component object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, or systemcomposer.arch.VariantComponent object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

Output Arguments
value — Parameter value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Parameter value, returned as a data type that depends on how the parameter is defined in the model
arguments.

unit — Units of parameter
character vector

Units of parameter, returned as a character vector.
Data Types: char

 getEvaluatedParameterValue

4-307

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-308

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

 getEvaluatedParameterValue

4-309

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getParameterNames | getParameterValue | setParameterValue | setUnit |
resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

4 Functions

4-310

getEvaluatedPropertyValue
Package: systemcomposer.arch

Get evaluated value of property from element

Syntax
value = getEvaluatedPropertyValue(element,property)

Description
value = getEvaluatedPropertyValue(element,property) gets the evaluated value of a
property specified on the architectural element.

Examples

Get Evaluated Property Value

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Apply the profile to the model and apply the stereotype to the component.

model.applyProfile("LatencyProfile");
comp.applyStereotype("LatencyProfile.electricalComponent");

Get the property value
value = getEvaluatedPropertyValue(comp,"LatencyProfile.electricalComponent.latency")

value =

 10

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

 getEvaluatedPropertyValue

4-311

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

property — Property name
character vector | string

Property name, specified as a character vector or string in the form
"<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, returned as a data type that depends on how the property is defined in the profile.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-312

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getEvaluatedPropertyValue

4-313

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
setProperty | getProperty | getStereotypeProperties | getPropertyValue

Topics
“Write Analysis Function”

4 Functions

4-314

getFunctionArgument
Package: systemcomposer.interface

Get function argument on function element

Syntax
arg = getFunctionArgument(functionElem,argName)

Description
arg = getFunctionArgument(functionElem,argName) gets the function argument argName
specified by a function prototype from a function defined by the function element functionElem.

Examples

Get Function Argument

Create a new model.

model = systemcomposer.createModel("archModel","SoftwareArchitecture",true);

Create a service interface.

interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface");

Create a function element.

element = addElement(interface,"newFunctionElement");

Set a function prototype to add function arguments.

setFunctionPrototype(element,"y=f0(u)")

Get a function argument.

argument = getFunctionArgument(element,"y")

argument =

 FunctionArgument with properties:

 Interface: [1×1 systemcomposer.interface.ServiceInterface]
 Element: [1×1 systemcomposer.interface.FunctionElement]
 Name: 'y'
 Type: [1×1 systemcomposer.ValueType]
 Dimensions: '1'
 Description: ''

 getFunctionArgument

4-315

 UUID: '018b4e55-fa8f-4250-ac2b-df72bf620feb'
 ExternalUID: ''

Input Arguments
functionElem — Function element
function element object

Function element, specified as a systemcomposer.interface.FunctionElement object.

argName — Argument name
character vector | string

Argument name, specified as a character vector or string.
Example: "y"
Data Types: char | string

Output Arguments
arg — Function argument
function argument object

Function argument, returned as a systemcomposer.interface.FunctionArgument object.

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

4 Functions

4-316

Term Definition Application More Information
software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 getFunctionArgument

4-317

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-318

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 getFunctionArgument

4-319

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

See Also
addElement | createDictionary | addServiceInterface | getInterface |
getInterfaceNames | removeInterface | linkDictionary | Adapter | addValueType |
setFunctionPrototype | setAsynchronous

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

4 Functions

4-320

getInterface
Package: systemcomposer.interface

Get object for named interface in interface dictionary

Syntax
interface = getInterface(dictionary,name)
interface = getInterface(dictionary,name,Name,Value)

Description
interface = getInterface(dictionary,name) gets the object for a named interface in the
interface dictionary.

interface = getInterface(dictionary,name,Name,Value) gets the object for a named
interface in the interface dictionary with additional options.

Examples

Add Data Interface and Get Data Interface

Add a data interface newInterface to the interface dictionary of the model. Obtain the data
interface object. Confirm by opening the Interface Editor.

arch = systemcomposer.createModel("newModel",true);
addInterface(arch.InterfaceDictionary,"newInterface");
interface = getInterface(arch.InterfaceDictionary,"newInterface")

interface =

 DataInterface with properties:

 Owner: [1×1 systemcomposer.interface.Dictionary]
 Name: 'newInterface'
 Elements: [0×0 systemcomposer.interface.DataElement]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: '205cdd2f-12bc-4bbb-a4a7-75d0ab18adb8'
 ExternalUID: ''

Add Physical Interface and Get Physical Interface

Add a physical interface newInterface to the interface dictionary of the model. Obtain the physical
interface object. Confirm by opening the Interface Editor.

arch = systemcomposer.createModel("newModel",true);
addPhysicalInterface(arch.InterfaceDictionary,"newInterface");
interface = getInterface(arch.InterfaceDictionary,"newInterface")

 getInterface

4-321

interface =

 PhysicalInterface with properties:

 Owner: [1×1 systemcomposer.interface.Dictionary]
 Name: 'newInterface'
 Elements: [0×0 systemcomposer.interface.PhysicalElement]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: '6110207d-2d6d-470e-9bf5-f0e6f6914685'
 ExternalUID: ''

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of interface
character vector | string

Name of interface, specified as a character vector or string.
Example: "newInterface"
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: getInterface(dict,"newInterface",ReferenceDictionary="")

ReferenceDictionary — Reference dictionary
character vector | string

Reference dictionary to search for interfaces, specified as a character vector or string with the .sldd
extension. Enter an empty character vector or string to include all referenced dictionaries in the
search.
Example:
getInterface(dict,"newInterface",ReferenceDictionary="referenceDictionary.sld
d")

Data Types: char | string

4 Functions

4-322

Output Arguments
interface — Interface
data interface object | physical interface object | service interface object | value type object

Interface, returned as a systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface,
systemcomposer.interface.ServiceInterface, or systemcomposer.ValueType object.

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 getInterface

4-323

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

4 Functions

4-324

See Also
addElement | getInterfaceNames | removeElement | addInterface | addValueType |
addPhysicalInterface | addServiceInterface | Adapter

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 getInterface

4-325

getInterfaceNames
Package: systemcomposer.interface

Get names of all interfaces in interface dictionary

Syntax
interfaceNames = getInterfaceNames(dictionary)

Description
interfaceNames = getInterfaceNames(dictionary) gets the names of all interfaces in the
interface dictionary.

Examples

Get Interface Names

Create a model, add three data interfaces, and get interface names. Confirm by opening the
Interface Editor.

arch = systemcomposer.createModel("newModel",true);
addInterface(arch.InterfaceDictionary,"newInterfaceA");
addInterface(arch.InterfaceDictionary,"newInterfaceB");
addInterface(arch.InterfaceDictionary,"newInterfaceC");
interfaceNames = getInterfaceNames(arch.InterfaceDictionary)

interfaceNames =

 1×3 cell array

 {'newInterfaceA'} {'newInterfaceB'} {'newInterfaceC'}

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

Output Arguments
interfaceNames — Interface names
cell array of character vectors

4 Functions

4-326

Interface names, returned as a cell array of character vectors.
Data Types: char

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 getInterfaceNames

4-327

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

4 Functions

4-328

See Also
addInterface | getInterface | removeInterface | addValueType | addServiceInterface |
addPhysicalInterface | Adapter

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 getInterfaceNames

4-329

getParameter
Package: systemcomposer.arch

Get parameter from architecture or component

Syntax
param = getParameter(arch,paramName)

Description
param = getParameter(arch,paramName) gets a parameter, param, with the name paramName
from the architecture arch.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-330

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 getParameter

4-331

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-332

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 getParameter

4-333

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-334

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 getParameter

4-335

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

Output Arguments
param — Parameter
parameter object

Parameter, returned as a systemcomposer.arch.Parameter object.

4 Functions

4-336

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 getParameter

4-337

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

4 Functions

4-338

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2022b

See Also
addParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterValue | setParameterValue | setUnit |
getParameterNames | resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 getParameter

4-339

getParameterDefinition
Package: systemcomposer.arch

(Not recommended) Get instance-specific parameter definition

Note The getParameterDefinition function is not recommended. Use the
systemcomposer.arch.Parameter object with its Type property instead. For more information,
see “Compatibility Considerations”.

Syntax
paramDef = getParameterDefinition(arch,paramName)

Description
paramDef = getParameterDefinition(arch,paramName) gets the instance-specific parameter
definition object for a given architecture, arch, and parameter name, paramName.

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

Output Arguments
paramDef — Parameter definition
parameter definition object

Parameter definition, returned as a systemcomposer.parameter.ParameterDefinition object.

Version History
Introduced in R2022a

R2022b_plus: getParameterDefinition function is not recommended
Not recommended starting in R2022b_plus

4 Functions

4-340

The getParameterDefinition function is not recommended. Use the
systemcomposer.arch.Parameter object with its Type property instead.

See Also
getEvaluatedParameterValue | getParameterNames | getParameterValue |
setParameterValue | setUnit | resetParameterToDefault

Topics
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 getParameterDefinition

4-341

getParameterNames
Package: systemcomposer.arch

Get parameter names on element

Syntax
paramNames = getParameterNames(element)

Description
paramNames = getParameterNames(element) gets the names of the parameters available on the
specified architectural element, element.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-342

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 getParameterNames

4-343

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-344

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 getParameterNames

4-345

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-346

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 getParameterNames

4-347

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
element — Architectural element
architecture object | component object | variant component object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, or systemcomposer.arch.VariantComponent object.

Output Arguments
paramNames — Parameter names
array of strings

Parameter names, returned as an array of strings.
Data Types: string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-348

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getParameterNames

4-349

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-350

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterValue | setParameterValue | setUnit |
resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 getParameterNames

4-351

getParameterPromotedFrom
Package: systemcomposer.arch

Get source parameter promoted from

Syntax
source = getParameterPromotedFrom(param)

Description
source = getParameterPromotedFrom(param) gets the source parameter source that the
given parameter param is promoted from.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-352

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 getParameterPromotedFrom

4-353

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-354

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 getParameterPromotedFrom

4-355

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-356

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 getParameterPromotedFrom

4-357

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
param — Parameter
parameter object

Parameter, specified as a systemcomposer.arch.Parameter object.

Output Arguments
source — Source parameter
parameter object

Source parameter, returned as a systemcomposer.arch.Parameter object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-358

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getParameterPromotedFrom

4-359

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-360

Version History
Introduced in R2022b

See Also
addParameter | getParameter | resetToDefault | getEvaluatedParameterValue |
getParameterNames | setParameterValue | resetParameterToDefault |
getParameterValue | setUnit

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 getParameterPromotedFrom

4-361

getParameterValue
Package: systemcomposer.arch

Get value of parameter

Syntax
[value,unit,isDefault] = getParameterValue(element,paramName)

Description
[value,unit,isDefault] = getParameterValue(element,paramName) gets the non-
evaluated parameter value of the parameter specified by paramName for the provided architectural
element, element.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-362

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 getParameterValue

4-363

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-364

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 getParameterValue

4-365

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-366

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 getParameterValue

4-367

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
element — Architectural element
architecture object | component object | variant component object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, or systemcomposer.arch.VariantComponent object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

Output Arguments
value — Parameter value
character vector

Parameter value, returned as a character vector.
Data Types: char

unit — Units of parameter
character vector

Units of parameter, returned as a character vector.
Data Types: char

isDefault — Whether parameter value is default
true or 1 | false or 0

Whether parameter value is default, returned as a logical.

4 Functions

4-368

Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 getParameterValue

4-369

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

4 Functions

4-370

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterNames | setParameterValue | setUnit |
resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 getParameterValue

4-371

getPort
Package: systemcomposer.arch

Get port from component

Syntax
port = getPort(compObj,portName)

Description
port = getPort(compObj,portName) gets the port on the component compObj with a specified
name portName.

Examples

Connect Ports

Create and connect two ports in System Composer.

Create a top-level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Create two new components.

names = ["Component1","Component2"];
newComponents = addComponent(rootArch,names);

Add ports to the components.

outPort1 = addPort(newComponents(1).Architecture,"testSig","out");
inPort1 = addPort(newComponents(2).Architecture,"testSig","in");

Extract the component ports.

srcPort = getPort(newComponents(1),"testSig");
destPort = getPort(newComponents(2),"testSig");

Connect the ports.

conns = connect(srcPort,destPort);

View the model.

systemcomposer.openModel(modelName);

Improve the model layout.

4 Functions

4-372

Simulink.BlockDiagram.arrangeSystem(modelName)

Input Arguments
compObj — Component
component object

Component to get port from, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

portName — Name of port
character vector | string

Name of port, specified as a character vector or string.
Example: "testSig"
Data Types: char | string

Output Arguments
port — Component port
component port

Component port, returned as a systemcomposer.arch.ComponentPort object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 getPort

4-373

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-374

Version History
Introduced in R2019a

See Also
createModel | addPort | addComponent | connect | Component

 getPort

4-375

getProperty
Package: systemcomposer.arch

Get property value corresponding to stereotype applied to element

Syntax
[propertyValue,propertyUnits] = getProperty(element,propertyName)

Description
[propertyValue,propertyUnits] = getProperty(element,propertyName) obtains the
value and units of the property specified in the propertyName argument. Get the property
corresponding to an applied stereotype by qualified name
"<profile>.<stereotype>.<property>".

Examples

Get Property from Component

Get the weight property from a component with sysComponent stereotype applied.

Create a model with a component called Component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype with a property, then apply the profile to the model.
profile = systemcomposer.profile.Profile.createProfile("sysProfile");
base = profile.addStereotype("sysComponent");
base.addProperty("weight",Type="double",DefaultValue="10",Units="g");
model.applyProfile("sysProfile");

Apply the stereotype to the component, and set a new weight property.

applyStereotype(comp,"sysProfile.sysComponent")
setProperty(comp,"sysProfile.sysComponent.weight","5","g")

Get the weight property with units.

[val,units] = getProperty(comp,"sysProfile.sysComponent.weight")

val =

 '5'

units =

4 Functions

4-376

 'g'

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

propertyName — Name of property
character vector | string

Name of property, specified as a character vector or string in the form
"<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
propertyValue — Value of property
character vector

Value of property, returned as a character vector.
Data Types: char

propertyUnits — Units of property
character vector

Units of property to interpret property values, returned as a character vector.
Data Types: char

 getProperty

4-377

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-378

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

 getProperty

4-379

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

4 Functions

4-380

Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
setProperty | removeProperty | addProperty | getStereotypeProperties

Topics
“Set Properties for Analysis”

 getProperty

4-381

getPropertyValue
Package: systemcomposer.arch

Get value of architecture property

Syntax
value = getPropertyValue(element,property)

Description
value = getPropertyValue(element,property) gets the non-evaluated property value for the
provided architectural element.

Examples

Get Property Value

Create a profile, add a component stereotype, and add a property with a default value.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component");
stereotype.addProperty("latency",Type="double",DefaultValue="10");

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Apply the profile to the model and apply the stereotype to the component. Open the Profile Editor.

model.applyProfile("LatencyProfile")
comp.applyStereotype("LatencyProfile.electricalComponent")
systemcomposer.profile.editor(profile)

Get the property value.
value = getPropertyValue(comp,"LatencyProfile.electricalComponent.latency")

value =

 '10'

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,

4 Functions

4-382

systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

property — Property name
character vector | string

Property name, specified as a character vector or string in the form
"<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
value — Property value
character vector

Property value, returned as a character vector.
Data Types: char

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 getPropertyValue

4-383

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-384

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

 getPropertyValue

4-385

Term Definition Application More Information
physical port A physical port represents a

Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
setProperty | getStereotypeProperties | getProperty | getEvaluatedPropertyValue

Topics
“Write Analysis Function”

4 Functions

4-386

getScenario
Package: systemcomposer.allocation

Get allocation scenario

Syntax
scenario = getScenario(allocSet,name)

Description
scenario = getScenario(allocSet,name) gets the allocation scenario in the allocation set
allocSet with the given name name, if one exists.

Examples

Create Allocation Set and Get Default Scenario

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1")

defaultScenario =

 AllocationScenario with properties:

 Name: 'Scenario 1'
 Description: ''
 AllocationSet: [1×1 systemcomposer.allocation.AllocationSet]
 Allocations: [0×0 systemcomposer.allocation.Allocation]
 UUID: '6cde23e8-7c72-4fa0-8f51-e65290208564'

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

name — Name of allocation scenario
character vector | string

 getScenario

4-387

Name of allocation scenario, specified as a character vector or string.
Example: "Scenario 1"
Data Types: char | string

Output Arguments
scenario — Allocation scenario
allocation scenario object

Allocation scenario, returned as a systemcomposer.allocation.AllocationScenario object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createScenario | deleteScenario | close | load | save | synchronizeChanges | find |
closeAll

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-388

getSourceElement
Package: systemcomposer.arch

Gets data elements selected on source port for connection

Syntax
selectedElems = getSourceElement(connector)

Description
selectedElems = getSourceElement(connector) gets the selected data elements on a source
port for a connection.

Examples

Get Data Element on Source Port of Connection

Get the selected data element on the source port for a connection.

Create a model and get its root architecture.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Add a component, create an input port on the component, create an input port on the architecture.
and extract both component port objects.

newComponent = addComponent(rootArch,"Component1");
inPortComp = addPort(newComponent.Architecture,...
"testSig1","in");
inPortArch = addPort(rootArch,"testSig1","in");
compDestPort = getPort(newComponent,"testSig1");
archSrcPort = getPort(rootArch,"testSig1");

Add data interface, create data element, and set the data interface on the architecture port.

interface = arch.InterfaceDictionary.addInterface("interface1");
interface.addElement("x");
archSrcPort.setInterface(interface);

Connect the ports and get the source element of the connector.

conns = connect(archSrcPort,compDestPort,SourceElement="x");
elem = getSourceElement(conns)

elem =

 1×1 cell array

 getSourceElement

4-389

 {'x'}

Input Arguments
connector — Connection between ports
connector object

Connection between ports, specified as a systemcomposer.arch.Connector object.

Output Arguments
selectedElems — Selected data element names
character vector

Selected data element names, returned as a character vector.
Data Types: char

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-390

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

 getSourceElement

4-391

Term Definition Application More Information
data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-392

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2020b

See Also
createModel | addPort | getPort | addComponent | addElement | addInterface |
setInterface | connect | getDestinationElement | Component

Topics
“Specify Source Element or Destination Element for Ports”

 getSourceElement

4-393

getStereotype
Package: systemcomposer.profile

Find stereotype in profile by name

Syntax
stereotype = getStereotype(profile,name)

Description
stereotype = getStereotype(profile,name) finds a stereotype in a profile by name.

Examples

Get Stereotype by Name

Create a profile for latency characteristics.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileB");

connLatency = profile.addStereotype("ConnectorLatency",AppliesTo="Connector");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",AppliesTo="Component");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",AppliesTo="Port");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

Get the stereotype ConnectorLatency in the profile.

stereotype = getStereotype(profile,"ConnectorLatency")

stereotype =
 Stereotype with properties:

 Name: 'ConnectorLatency'
 Description: ''
 Parent: [0x0 systemcomposer.profile.Stereotype]
 AppliesTo: 'Connector'
 Abstract: 0
 Icon: ''
 ComponentHeaderColor: [210 210 210]
 ConnectorLineColor: [168 168 168]
 ConnectorLineStyle: 'Default'
 FullyQualifiedName: 'LatencyProfileB.ConnectorLatency'
 Profile: [1x1 systemcomposer.profile.Profile]
 OwnedProperties: [1x2 systemcomposer.profile.Property]

4 Functions

4-394

 Properties: [1x2 systemcomposer.profile.Property]

Close the profile to rerun this example.

profile.close(true)

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

name — Stereotype name
character vector | string

Stereotype name, specified as a character vector or string. The name of the stereotype must be
unique within the profile.
Data Types: char | string

Output Arguments
stereotype — Stereotype
stereotype object

Stereotype found, returned as a systemcomposer.profile.Stereotype object.

 getStereotype

4-395

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
addStereotype | removeStereotype | getDefaultStereotype | setDefaultStereotype

4 Functions

4-396

Topics
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”

 getStereotype

4-397

getStereotypeProperties
Package: systemcomposer.arch

Get stereotype property names on element

Syntax
propNames = getStereotypeProperties(archElement)

Description
propNames = getStereotypeProperties(archElement) returns an array of stereotype
property names on the specified architecture of an element.

Examples

Get Stereotype Properties

Create a profile, add a component stereotype, and add properties with default values.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component");
stereotype.addProperty("latency",Type="double",DefaultValue="10");
stereotype.addProperty("mass",Type="double",DefaultValue="20");

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Apply the profile to the model and apply the stereotype to the component. Open the Profile Editor.

model.applyProfile("LatencyProfile");
comp.applyStereotype("LatencyProfile.electricalComponent");
systemcomposer.profile.editor(profile)

Get stereotype properties on the architecture of the component.
properties = getStereotypeProperties(comp.Architecture)

properties =

 1×2 string array

 "LatencyProfile.electricalComponent.latency" "LatencyProfile.electricalComponent.mass"

Input Arguments
archElement — Model element architecture
architecture object | architecture port object | connector object | physical connector object | function
object | data interface object | value type object | physical interface object | service interface object

4 Functions

4-398

Model element architecture, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector,
systemcomposer.arch.PhysicalConnector, systemcomposer.arch.Function,
systemcomposer.interface.DataInterface, systemcomposer.ValueType,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object. You can also use the Architecture
property of the systemcomposer.arch.Component object or the ArchitecturePort property of
the systemcomposer.arch.ComponentPort object.
Example: arch
Example: comp.Architecture
Example: conn
Example: compPort.ArchitecturePort

Output Arguments
propNames — Property names
string array

Property names, returned as a string array, each in the form
"<profile>.<stereotype>.<property>".
Data Types: string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 getStereotypeProperties

4-399

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-400

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

 getStereotypeProperties

4-401

Term Definition Application More Information
physical port A physical port represents a

Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
setProperty | getProperty | getEvaluatedPropertyValue | getPropertyValue

Topics
“Write Analysis Function”

4 Functions

4-402

getStereotypes
Package: systemcomposer.arch

Get stereotypes applied on element of architecture model

Syntax
stereotypes = getStereotypes(element)

Description
stereotypes = getStereotypes(element) gets an array of fully qualified stereotype names
that have been applied on an element of an architecture model.

Examples

Get Stereotypes

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Apply the stereotype to the component and get the stereotypes on the component.

comp.applyStereotype("LatencyProfile.LatencyBase");
stereotypes = getStereotypes(comp)

stereotypes =

 1×1 cell array

 {'LatencyProfile.LatencyBase'}

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

 getStereotypes

4-403

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

Output Arguments
stereotypes — List of stereotypes
cell array of character vectors

List of stereotypes, returned as a cell array of character vectors in the form
'<profile>.<stereotype>'.
Data Types: char

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-404

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getStereotypes

4-405

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

4 Functions

4-406

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 getStereotypes

4-407

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

4 Functions

4-408

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
applyStereotype | removeStereotype | batchApplyStereotype |
getStereotypeProperties

Topics
“Use Stereotypes and Profiles”

 getStereotypes

4-409

getSubGroup
Package: systemcomposer.view

Get subgroup in element group of view

Syntax
subGroup = getSubGroup(elementGroup,subGroupName)

Description
subGroup = getSubGroup(elementGroup,subGroupName) gets a subgroup, subGroup, named
subGroupName within the element group elementGroup of an architecture view.

Examples

Create and Get Subgroup in View

Open the keyless entry system example and create a view newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see the new view newView.

model.openViews

Create a subgroup myGroup.

group = view.Root.createSubGroup("myGroup");

Get the subgroup myGroup.

getGroup = view.Root.getSubGroup("myGroup")

getGroup =
 ElementGroup with properties:

 Name: 'myGroup'
 UUID: 'a0f647f5-8f2b-4169-a40d-e084f4dee414'
 Elements: []
 SubGroups: [0×0 systemcomposer.view.ElementGroup]

Input Arguments
elementGroup — Element group
element group object

4 Functions

4-410

Element group for view, specified as a systemcomposer.view.ElementGroup object.

subGroupName — Name of subgroup
character vector | string

Name of subgroup, specified as a character vector or string.
Example: "myGroup"
Data Types: char | string

Output Arguments
subGroup — Subgroup
element group object

Subgroup, returned as a systemcomposer.view.ElementGroup object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

 getSubGroup

4-411

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
openViews | createView | getView | deleteView | systemcomposer.view.ElementGroup |
systemcomposer.view.View | createSubGroup | deleteSubGroup | addElement |
removeElement

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-412

getValue
Package: systemcomposer.analysis

Get value of property from element instance

Syntax
[value,unit] = getValue(instance,property)

Description
[value,unit] = getValue(instance,property) obtains the property property of the
instance instance and assigns it to the specified value value.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Get Mass Property Value

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and get the
mass property value of a nested component.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
[massValue,unit] = getValue(instance.Components(1).Components(1),...
"UAVComponent.OnboardElement.Mass")

massValue = 1.7000

unit =
'kg'

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

property — Property
character vector | string

 getValue

4-413

Property, specified in the form "<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, returned as a data type that depends on how the property is defined in the profile.

unit — Property unit
character vector

Property unit, returned as a character vector that describes the unit of the property as defined in the
profile.
Example: 'kg'
Data Types: char

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

4 Functions

4-414

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

 getValue

4-415

Term Definition Application More Information
profile A profile is a package of

stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
setValue | hasValue | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

4 Functions

4-416

getQualifiedName
Package: systemcomposer.arch

Get model element qualified name

Syntax
getQualifiedName(element)

Description
getQualifiedName(element) gets the qualified name of the architecture model element element.

Examples

Get Qualified Name of Component

Create a component, newComponent, then get its qualified name.

model = systemcomposer.createModel("newModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
name = getQualifiedName(newComponent)

name =

 'newModel/newComponent'

Input Arguments
element — Architecture model element
element object

Architecture model element, specified as a systemcomposer.arch.Element object.

An element object translates to a systemcomposer.arch.Component,
systemcomposer.arch.VariantComponent, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.PhysicalConnector object.

 getQualifiedName

4-417

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-418

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

 getQualifiedName

4-419

Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
Component | Variant Component | lookup

Topics
“Compose Architectures Visually”
“Decompose and Reuse Components”
“Implement Component Behavior Using Simscape”

4 Functions

4-420

getView
Package: systemcomposer.arch

Find architecture view

Syntax
view = getView(model,name)

Description
view = getView(model,name) finds the view view in the architecture model model with view
name name.

Examples

Create and Get View

Open the keyless entry system example and create a view, newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see newView.

model.openViews

Find the view.

foundView = model.getView("newView")

foundView =
 View with properties:

 Name: 'newView'
 Root: [1×1 systemcomposer.view.ElementGroup]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: 'c8e0a278-0ae0-4c8a-aca5-7ef730dbb1db'
 Select: []
 GroupBy: {}
 Color: '#0072bd'
 Description: ''
 IncludeReferenceModels: 1

Input Arguments
model — Architecture model
model object

 getView

4-421

Architecture model, specified as a systemcomposer.arch.Model object.

name — Name of view
character vector | string

Name of view, specified as a character vector or string.
Example: "All Components Grouped by Review Status"
Data Types: char | string

Output Arguments
view — Architecture view
view object

Architecture view found, returned as a systemcomposer.view.View object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-422

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 getView

4-423

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-424

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | createView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 getView

4-425

HasConnector
Package: systemcomposer.query

Create query to select architectural elements with connector based on specified subconstraint

Syntax
query = HasConnector(subconstraint)

Description
query = HasConnector(subconstraint) creates a query query that the find and createView
functions use to select architectural elements with a connector that satisfies the given subconstraint
subconstraint.

Examples

Find All Components with Connectors with Stereotype

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Specify the LatencyProfile.NodeLatency stereotype as a component stereotype. Set the default
connector stereotype.
nodeLatency.AppliesTo = "Component";
nodeLatency.setDefaultElementStereotype("Connector","LatencyProfile.ConnectorLatency");

Create a model, apply the profile to the model, and add a parent component. Apply the parent
component stereotype on the parent component. Then, open the Profile Editor.

4 Functions

4-426

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
arch.applyProfile("LatencyProfile");
newComponent = addComponent(arch.Architecture,"Component");
newComponent.applyStereotype("LatencyProfile.NodeLatency");
systemcomposer.profile.editor(profile)

Create two child components. Add ports. Then, create a connection between the ports and get
stereotypes on the connector.
childComponent1 = addComponent(newComponent.Architecture,"Child1");
childComponent2 = addComponent(newComponent.Architecture,"Child2");

outPort1 = addPort(childComponent1.Architecture,"testSig","out");
inPort1 = addPort(childComponent2.Architecture,"testSig","in");
srcPort = getPort(childComponent1,"testSig");
destPort = getPort(childComponent2,"testSig");

connector = connect(srcPort,destPort);
stereotypes = getStereotypes(connector)

stereotypes =

 1×1 cell array

 {'LatencyProfile.ConnectorLatency'}

Create a query for all the elements with connectors with the ConnectorLatency stereotype and run
the query.
constraint = HasConnector(HasStereotype(Property("Name") == "ConnectorLatency"));
baseComp = find(arch,constraint,Recurse=true,IncludeReferenceModels=true)

baseComp =

 1×1 cell array

 {'archModel/Component'}

Input Arguments
subconstraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

 HasConnector

4-427

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-428

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2020a

See Also
createView | find | systemcomposer.query.Constraint | HasInterface | HasPort |
HasInterfaceElement | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

 HasConnector

4-429

HasInterface
Package: systemcomposer.query

Create query to select architectural elements with interface on port based on specified subconstraint

Syntax
query = HasInterface(subconstraint)

Description
query = HasInterface(subconstraint) creates a query query that the find and createView
functions use to select architectural elements with an interface that satisfies the given subconstraint
subconstraint.

Examples

Construct Query to Select All Port Interfaces

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query for all the interfaces in a port with KeyFOBPosition in the Name and run the query.

constraint = HasPort(HasInterface(contains(Property("Name"),"KeyFOBPosition")));
portInterfaces = find(model,constraint,Recurse=true,IncludeReferenceModels=true)

portInterfaces = 10×1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/FOB Locator System' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

4 Functions

4-430

Input Arguments
subconstraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 HasInterface

4-431

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | HasPort | HasConnector |
HasInterfaceElement | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

4 Functions

4-432

HasInterfaceElement
Package: systemcomposer.query

Create query to select architectural elements with interface element on interface based on specified
subconstraint

Syntax
query = HasInterfaceElement(subconstraint)

Description
query = HasInterfaceElement(subconstraint) creates a query query that the find and
createView functions use to select architectural elements with an interface element that satisfies
the given subconstraint subconstraint.

Examples

Construct Query to Select All Interface Elements

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query for all the interface elements with c in the Name and run the query.

constraint = HasPort(HasInterface(HasInterfaceElement(contains(Property("Name"),"c"))));
elements = find(model,constraint,Recurse=true,IncludeReferenceModels=true)

elements =

 0×0 empty cell array

Input Arguments
subconstraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

 HasInterfaceElement

4-433

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-434

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | HasInterface | HasPort |
HasConnector | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

 HasInterfaceElement

4-435

HasPort
Package: systemcomposer.query

Create query to select architectural elements with port based on specified subconstraint

Syntax
query = HasPort(subconstraint)

Description
query = HasPort(subconstraint) creates a query query that the find and createView
functions use to select architectural elements with a port that satisfies the given subconstraint
subconstraint.

Examples

Construct Query to Select All Sensor Component Ports

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query for all the elements with ports containing Sensor in the Name and run the query.

constraint = HasPort(contains(Property("Name"),"Sensor"));
sensorComp = find(model,constraint,Recurse=true,IncludeReferenceModels=true)

sensorComp = 1×1 cell array
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller'}

Input Arguments
subconstraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

4 Functions

4-436

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 HasPort

4-437

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | HasInterface |
HasInterfaceElement | getQualifiedName | HasConnector

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

4 Functions

4-438

hasProperty
Package: systemcomposer.arch

Find if element has property

Syntax
result = hasProperty(element,property)

Description
result = hasProperty(element,property) returns true if the property property has been
added on the model element element.

Examples

Find Property on Component

Get the weight property from a component with the sysComponent stereotype applied.

Create a model with a component called Component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and a property, then apply the profile to the model.
profile = systemcomposer.profile.Profile.createProfile("sysProfile");
base = profile.addStereotype("sysComponent");
base.addProperty("weight",Type="double",DefaultValue="10",Units="g");
model.applyProfile("sysProfile")

Apply the stereotype to the component, then set a new weight property.

applyStereotype(comp,"sysProfile.sysComponent")
setProperty(comp,"sysProfile.sysComponent.weight","5","g")

Find if the weight property exists on the component.

result = hasProperty(comp,"sysProfile.sysComponent.weight")

result =

 logical

 hasProperty

4-439

 1

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

property — Property
character vector | string

Property, specified as a character vector or string in the form
"<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
result — Query result
true or 1 | false or 0

Query result, returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-440

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 hasProperty

4-441

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

4 Functions

4-442

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 hasProperty

4-443

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

4 Functions

4-444

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2021a

See Also
addProperty | removeProperty | hasStereotype

Topics
“Use Stereotypes and Profiles”

 hasProperty

4-445

hasStereotype
Package: systemcomposer.arch

Find if element has stereotype applied

Syntax
result = hasStereotype(element,stereotype)

Description
result = hasStereotype(element,stereotype) returns true if the stereotype stereotype
has been applied on the model element element.

Examples

Apply Stereotype and Find Applied Stereotypes

Create a model with a component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Apply the stereotype to the component. Find if the stereotypes are applied on the component.

comp.applyStereotype("LatencyProfile.LatencyBase");
result = hasStereotype(comp,"LatencyProfile.LatencyBase")

result =

 logical

 1

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

4 Functions

4-446

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

stereotype — Stereotype
character vector | string | stereotype object

Stereotype, specified as a character vector or string in the form "<profile>.<stereotype>" or a
systemcomposer.profile.Stereotype object.
Data Types: char | string

Output Arguments
result — Query result
true or 1 | false or 0

Query result, returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 hasStereotype

4-447

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-448

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

 hasStereotype

4-449

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-450

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

 hasStereotype

4-451

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2021a

See Also
removeStereotype | applyStereotype | hasProperty | getStereotypes

Topics
“Use Stereotypes and Profiles”

4 Functions

4-452

HasStereotype
Package: systemcomposer.query

Create query to select architectural elements with stereotype based on specified subconstraint

Syntax
query = HasStereotype(subconstraint)

Description
query = HasStereotype(subconstraint) creates a query query that the find and
createView functions use to select architectural elements with a stereotype that satisfies the given
subconstraint subconstraint.

Examples

Construct Query to Select All Hardware Components

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query for all the hardware components and run the query, displaying one of them.

constraint = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));
hwComp = find(model,constraint,Recurse=true,IncludeReferenceModels=true);
comp = hwComp(16)

comp = 1×1 cell array
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor'}

Input Arguments
subconstraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

 HasStereotype

4-453

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-454

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | IsStereotypeDerivedFrom |
getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

 HasStereotype

4-455

hasValue
Package: systemcomposer.analysis

Find if element instance has property value

Syntax
result = hasValue(instance,property)

Description
result = hasValue(instance,property) queries whether the instance instance has the
given property property.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Query Whether Instance Has Property

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and query
whether an instance element has a property included.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
queryResult = hasValue(instance.Components(1).Components(1),...
"UAVComponent.OnboardElement.Mass")

queryResult = logical
 1

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

property — Property
character vector | string

4 Functions

4-456

Property, specified in the form "<profile>.<stereotype>.<property>".
Data Types: char | string

Output Arguments
result — Query result
true or 1 | false or 0

Query result, returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

 hasValue

4-457

Term Definition Application More Information
instance An instance is an

occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

4 Functions

4-458

See Also
setValue | getValue | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

 hasValue

4-459

systemcomposer.importModel
Import model information from MATLAB tables

Syntax
archModel = systemcomposer.importModel(modelName,components,ports,
connections,portInterfaces,requirementLinks,parameters)
archModel = systemcomposer.importModel(modelName,importStruct)
[archModel,idMappingTable,importLog,errorLog] = systemcomposer.importModel(
___)

Description
archModel = systemcomposer.importModel(modelName,components,ports,
connections,portInterfaces,requirementLinks,parameters) creates a new architecture
model based on MATLAB tables that specify components, ports, connections, port interfaces,
requirement links, and parameters. The only required input arguments are modelName and the
components table. For empty table input arguments, enter table.empty. However, trailing empty
tables are ignored and do not need to be entered. To import a basic architecture model, see “Define
Basic Architecture”. To import requirementLinks, you need a Requirements Toolbox license.

archModel = systemcomposer.importModel(modelName,importStruct) creates a new
architecture model based on a structure of MATLAB tables that have prescribed formats to specify
model element relationships, stereotypes, and properties. For more information on the import
structure, see “Import and Export Architecture Models”.

[archModel,idMappingTable,importLog,errorLog] = systemcomposer.importModel(
___) creates a new architecture model with output arguments idMappingTable with table
information, importLog to display import information, and errorLog to display import error
information. All previous syntax descriptions are included.

Examples

Import and Export Architectures

In System Composer™, an architecture is fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in or
converted into MATLAB® tables.

In this example, the architecture information of a simple unmanned aerial vehicle (UAV) system is
defined in a Microsoft® Excel® spreadsheet and is used to create a System Composer architecture
model. It also links elements to the specified system level requirement. You can modify the files in this
example to import architectures defined in external tools, when the data includes the required

4 Functions

4-460

information. The example also shows how to export this architecture information from System
Composer architecture model to an Excel spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, interfaces and requirement links in MATLAB tables. The
components table must include name, unique ID, and parent component ID for each component. The
spreadsheet can also include other relevant information required to construct the architecture
hierarchy for referenced model, and stereotype qualifier names. The ports table must include port
name, direction, component, and port ID information. Port interface information may also be required
to assign ports to components. The connections table includes information to connect ports. At a
minimum, this table must include the connection ID, source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) function:

• Reads stereotype names from the components table and loads the profiles
• Creates components and attaches ports
• Creates connections using the connection map
• Sets interfaces on ports
• Links elements to specified requirements (requires a Requirements Toolbox™ license)
• Saves referenced models
• Saves the architecture model

Instantiate adapter class to read from Excel.

modelName = "simpleUAVArchitecture";

ImportModelFromExcel function reads the Excel file and creates the MATLAB tables.

importAdapter = ImportModelFromExcel("SmallUAVModel.xls","Components", ...
 "Ports","Connections","PortInterfaces","RequirementLinks");
importAdapter.readTableFromExcel();

Import an Architecture

model = systemcomposer.importModel(modelName,importAdapter.Components, ...
 importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces, ...
 importAdapter.RequirementLinks);

Auto-arrange blocks in the generated model.

Simulink.BlockDiagram.arrangeSystem(modelName)

 systemcomposer.importModel

4-461

Export an Architecture

You can export an architecture to MATLAB tables and then convert the tables to an external file.

exportedSet = systemcomposer.exportModel(modelName);

The output of the function is a structure that contains the component table, port table, connection
table, the interface table, and the requirement links table. Save this structure to an Excel file.

SaveToExcel("ExportedUAVModel",exportedSet);

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

components — Model component information
MATLAB table

Model component information, specified as a MATLAB table. The component table must include the
columns Name, ID, and ParentID. To specify ComponentType as Variant, Composition (default),
StateflowBehavior, or Behavior (reference components and subsystem components) and to set a
ReferenceModelName, see “Import Variant Components, Stateflow Behaviors, or Reference
Components”. To apply stereotypes using StereotypeNames and set property values to components,
see “Apply Stereotypes and Set Property Values on Imported Model”.

4 Functions

4-462

Data Types: table

ports — Model port information
MATLAB table

Model port information, specified as a MATLAB table. The ports table must include the columns
Name, Direction, ID, and CompID. The Direction column can have values Input, Output, or
Physical. The optional column InterfaceID specifies the interface. portInterfaces information
may also be required to assign interfaces to ports.
Data Types: table

connections — Model connections information
MATLAB table

Model connections information, specified as a MATLAB table. The connections table must include the
columns Name, ID, SourcePortID, and DestPortID. To specify SourceElement or
DestinationElement on an architecture port, see “Specify Elements on Architecture Port”. Assign
a stereotype using the optional column StereotypeNames. The optional Kind column can be
specified as the default Data or Physical for physical connections.
Data Types: table

portInterfaces — Model port interfaces information
MATLAB table

Model port interfaces information, specified as a MATLAB table. The port interfaces table must
include the columns Name, ID, ParentID, DataType, Dimensions, Units, Complexity, Minimum,
and Maximum. To import interfaces and map ports to interfaces, see “Import Data Interfaces and Map
Ports to Interfaces”. Add a description using the option column Description. Assign a stereotype
using the optional column StereotypeNames.
Data Types: table

requirementLinks — Model requirement links information
MATLAB table

Model requirement links information, specified as a MATLAB table. The requirement links table must
include the columns Label, ID, SourceID, DestinationType, DestinationID, and Type. For an
example, see “Assign Requirement Links on Imported Model”. To update reference requirement links
from an imported file and integrate them into the model, see “Update Reference Requirement Links
from Imported File” on page 4-791. Optional columns include: DestinationArifact,
SourceArtifact, ReferencedReqID, Keywords, CreatedOn, CreatedBy, ModifiedOn,
ModifiedBy, and Revision. A Requirements Toolbox license is required to import the
requirementLinks table to a System Composer architecture model.
Data Types: table

parameters — Model parameters information
MATLAB table

Model parameters information, specified as a MATLAB table. The parameters table must include the
columns Name, ID, Parent, and Value. To import an architecture model with parameters
programmatically, see Import Architecture With Parameters. Add value type information to the
parameter with the Units, Type, Complexity, Minimum, and Maximum columns. Promote

 systemcomposer.importModel

4-463

parameters to an architecture in the hierarchy using the PromotedTo column. For more information,
see “Import Parameters with Parameter Value Types”.
Data Types: table

importStruct — Model tables
structure

Model tables, specified as a structure containing the tables components, ports, connections,
portInterfaces, requirementLinks, and parameters and a field domain. Only the
components table is required. Possible values for domain are the default "System" for architecture
models and "Software" for software architecture models. For software architecture models, to
import a model with functions, the importStruct can have a functions field that contains function
information.

For more information on the import structure, see “Import and Export Architecture Models”.
Data Types: struct

Output Arguments
archModel — Handle to architecture model
architecture object

Handle to architecture model, specified as a systemcomposer.arch.Architecture object.

idMappingTable — Mapping of custom IDs and internal UUIDs of elements
structure

Mapping of custom IDs and internal UUIDs of elements, returned as a struct of MATLAB tables.
Data Types: struct

importLog — Confirmation that elements were imported
cell array of character vectors

Confirmation that elements were imported, returned as a cell array of character vectors.
Data Types: char

errorLog — Errors reported during import process
cell array of message objects

Errors reported during import process, returned as a cell array of message objects. You can obtain
the error text by calling the getString method on each message object. For example,
errorLog.getString is used to obtain the errors reported as a string.

4 Functions

4-464

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.importModel

4-465

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
Blocks
Component | Variant Component | Reference Component

Functions
exportModel | systemcomposer.exportToVersion |
systemcomposer.updateLinksToReferenceRequirements

Topics
“Import and Export Architecture Models”
“Author Parameters in System Composer Using Parameter Editor”

4 Functions

4-466

increaseExecutionOrder
Package: systemcomposer.arch

Change function execution order to later

Syntax
increaseExecutionOrder(functionObj)

Description
increaseExecutionOrder(functionObj) increases execution order of the specified function
functionObj by 1. If the function is at the maximum execution order, the
increaseExecutionOrder method will fail with a warning.

Examples

Change Execution Order of Software Functions

This example shows the software architecture of a throttle position control system and how to
schedule the execution order of the root level functions.

model = systemcomposer.openModel("ThrottleControlComposition");

Simulate the model to populate it with functions.

sim("ThrottleControlComposition");

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

Decrease the execution order of the third function.

decreaseExecutionOrder(model.Architecture.Functions(3))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'TPS_Primary_read_5ms' }

 increaseExecutionOrder

4-467

 {'Controller_run_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The third function is now moved up in execution order, executing earlier.

Increase the execution order of the second function.

increaseExecutionOrder(model.Architecture.Functions(2))

View the function names ordered by execution order.

functions = {model.Architecture.Functions.Name}'

functions = 6×1 cell
 {'Actuator_output_5ms' }
 {'Controller_run_5ms' }
 {'TPS_Primary_read_5ms' }
 {'TPS_Secondary_read_5ms'}
 {'TP_Monitor_D1' }
 {'APP_Sensor_read_10ms' }

The second function is now moved down in execution order, executing later.

Input Arguments
functionObj — Function
function object

Function, specified as a systemcomposer.arch.Function object.

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

4 Functions

4-468

Term Definition Application More Information
software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 increaseExecutionOrder

4-469

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-470

Version History
Introduced in R2021b

See Also
systemcomposer.createModel | createArchitectureModel | decreaseExecutionOrder

Topics
“Modeling Software Architecture of Throttle Position Control System”
“Simulate and Deploy Software Architectures”
“Author Software Architectures”

 increaseExecutionOrder

4-471

inlineComponent
Package: systemcomposer.arch

Remove reference architecture or behavior from component

Syntax
componentObj = inlineComponent(component,inlineFlag)

Description
componentObj = inlineComponent(component,inlineFlag) retains the contents of the
architecture model referenced by the specified component and breaks the link to the reference
model. If inlineFlag is set to 0 (false), then the contents of the architecture model are removed
and only interfaces remain. You can also use inlineComponent to remove Stateflow chart and
Simulink behaviors from a component or to remove Simulink model or subsystem behaviors
referenced by a component.

Examples

Reuse Component and Remove Architecture Reference

Save the component robotComp in the architecture model Robot.slx and reference it from another
component, electricComp, so that the electricComp component uses the architecture of the
robotComp component. Remove the architecture reference from the robotComp component so that
its architecture can be edited independently.

Create a model archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model with the names "electricComp" and "robotComp".

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);

Save the robotComp component in the Robot.slx model so the component references the model.

saveAsModel(comp(2),"Robot");

Link the electricComp component to the same model Robot.slx so it uses the architecture of the
original robotComp component and references the architecture model Robot.slx.

linkToModel(comp(1),"Robot");

Remove the architecture reference from the robotComp component while retaining the contents, so
that its architecture can be edited independently, breaking the link to the referenced model.

inlineComponent(comp(2),true);

4 Functions

4-472

Clean up the model.

Simulink.BlockDiagram.arrangeSystem("archModel");

Add Stateflow Behavior to Component and Remove

Add a Stateflow chart behavior to the component named robotComp within the current model. Then,
remove the behavior.

Create a model archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model with the names "electricComp" and "robotComp".

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);

Add Stateflow chart behavior model to the robotComp component.

createStateflowChartBehavior(comp(2));

Remove Stateflow chart behavior from the robotComp component and remove all contents of the
Stateflow chart.

inlineComponent(comp(2),false);

Clean up the model.

Simulink.BlockDiagram.arrangeSystem("archModel");

Input Arguments
component — Component
component object

Component linked to an architecture model, specified as a systemcomposer.arch.Component
object.

inlineFlag — Control of contents of component
true or 1 | false or 0

Control of contents of component, specified as a logical 1 (true) if contents of the referenced
architecture model are copied to the component architecture and 0 (false) if the contents are not
copied and only ports and interfaces are preserved.
Data Types: logical

Output Arguments
componentObj — Component
component object

 inlineComponent

4-473

Component with referenced architecture or behavior removed, returned as a
systemcomposer.arch.Component object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-474

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

 inlineComponent

4-475

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2019a

See Also
createSimulinkBehavior | createArchitectureModel | createStateflowChartBehavior |
extractArchitectureFromSimulink | isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

4 Functions

4-476

instantiate
Package: systemcomposer.arch

Create analysis instance from specification

Syntax
instance = instantiate(arch,properties,name)
instance = instantiate(arch,profile,name)
instance = instantiate(___ ,Name,Value)

Description
instance = instantiate(arch,properties,name) creates an instance instance named
name of a model architecture arch with properties properties for analysis. Get the Architecture
property of the systemcomposer.arch.Model object model using model.Architecture in the
MATLAB Command Window.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

instance = instantiate(arch,profile,name) creates an instance instance named name of
a model architecture arch with all stereotypes in a profile profile for analysis.

instance = instantiate(___ ,Name,Value) creates an instance of a model architecture for
analysis with additional arguments.

Examples

Instantiate All Properties of Stereotypes in Profile

Instantiate all properties of stereotypes in a profile that will be applied to specific elements during
instantiation.

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

 instantiate

4-477

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Create a new model and apply the profile to the model.
model = systemcomposer.createModel("archModel",true);
model.applyProfile("LatencyProfile");

Specify type of elements each stereotype can be applied on.
NodeLatency = struct("elementKinds",["Component"]);
ConnectorLatency = struct("elementKinds",["Connector"]);
LatencyBase = struct("elementKinds",["Connector","Port","Component"]);
PortLatency = struct("elementKinds",["Port"]);

Create the analysis structure.
LatencyAnalysis = struct("NodeLatency",NodeLatency, ...
 "ConnectorLatency",ConnectorLatency, ...
 "PortLatency",PortLatency, ...
 "LatencyBase",LatencyBase);

Create the properties structure.
properties = struct("LatencyProfile",LatencyAnalysis);

Instantiate all properties of stereotypes in the profile.
instance = instantiate(model.Architecture,properties,"NewInstance")

Instantiate Specific Properties of Stereotypes in Profile

Instantiate specific properties of stereotypes in a profile that will be applied to specific elements
during instantiation.

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Create a new model and apply the profile to the model.

4 Functions

4-478

model = systemcomposer.createModel("archModel",true);
model.applyProfile("LatencyProfile");

Specify some properties of the stereotypes in the profile.

NodeLatency = struct("elementKinds",["Component"], ...
 "properties",struct("resources",true));
ConnectorLatency = struct("elementKinds",["Connector"], ...
 "properties",struct("secure",true,"linkDistance",true));
LatencyBase = struct("elementKinds",[], ...
 "properties",struct("dataRate",true,"latency",false));
PortLatency = struct('elementKinds',["Port"], ...
 "properties",struct("queueDepth",true));

LatencyAnalysis = struct("NodeLatency",NodeLatency, ...
 "ConnectorLatency",ConnectorLatency, ...
 "PortLatency",PortLatency, ...
 "LatencyBase",LatencyBase);

Create the properties structure.
properties = struct("LatencyProfile",LatencyAnalysis);

Instantiate some properties of stereotypes in the profile.
instance = instantiate(model.Architecture,properties,"NewInstance")

Instantiate All Stereotypes in Profile

Instantiate all stereotypes already in a profile that will be applied to elements during instantiation.

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Create a new model and apply the profile to the model.
model = systemcomposer.createModel("archModel",true);
model.applyProfile("LatencyProfile");

Instantiate all stereotypes in a profile.

 instantiate

4-479

instance = instantiate(model.Architecture,"LatencyProfile","NewInstance")

Analyze Latency Characteristics

Create an instantiation for analysis for a system with latency in its wiring. The materials used are
copper, fiber, and WiFi.

Create Latency Profile with Stereotypes and Properties

Create a System Composer profile with a base, connector, component, and port stereotype. Add
properties with default values to each stereotype as needed for analysis.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfileC");

Add a base stereotype with properties.

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

Add a connector stereotype with properties.

connLatency = profile.addStereotype("ConnectorLatency",...
 Parent="LatencyProfileC.LatencyBase");
connLatency.addProperty("secure",Type="boolean",DefaultValue="true");
connLatency.addProperty("linkDistance",Type="double");

Add a component stereotype with properties.

nodeLatency = profile.addStereotype("NodeLatency",...
 Parent="LatencyProfileC.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

Add a port stereotype with properties.

portLatency = profile.addStereotype("PortLatency",...
 Parent="LatencyProfileC.LatencyBase");
portLatency.addProperty("queueDepth",Type="double",DefaultValue="4.29");
portLatency.addProperty("dummy",Type="int32");

Instantiate Using Analysis Function

Create a new model and apply the profile. Create components, ports, and connections in the model.
Apply stereotypes to the model elements. Finally, instantiate using the analysis function.

model = systemcomposer.createModel("archModel",true);
arch = model.Architecture;

Apply profile to model.

model.applyProfile("LatencyProfileC");

Create components, ports, and connections.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','out'});

4 Functions

4-480

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower','MotionCommand'},{'in','in','out'});
componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

c_sensorData = connect(arch,componentSensor,componentPlanning);
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Clean up the canvas.

Simulink.BlockDiagram.arrangeSystem("archModel");

Batch apply stereotypes to model elements.

batchApplyStereotype(arch,"Component","LatencyProfileC.NodeLatency");
batchApplyStereotype(arch,"Port","LatencyProfileC.PortLatency");
batchApplyStereotype(arch,"Connector","LatencyProfileC.ConnectorLatency");

Instantiate using the analysis function.

instance = instantiate(model.Architecture,"LatencyProfileC","NewInstance",...
 Function=@calculateLatency,Arguments="3", ...
 Strict=true,NormalizeUnits=false,Direction="PreOrder")

instance =
 ArchitectureInstance with properties:

 Specification: [1×1 systemcomposer.arch.Architecture]
 IsStrict: 1
 NormalizeUnits: 0
 AnalysisFunction: @calculateLatency
 AnalysisDirection: PreOrder
 AnalysisArguments: '3'
 ImmediateUpdate: 0
 Components: [1×3 systemcomposer.analysis.ComponentInstance]
 Ports: [0×0 systemcomposer.analysis.PortInstance]
 Connectors: [1×3 systemcomposer.analysis.ConnectorInstance]
 Name: 'NewInstance'

Inspect Component, Port, and Connector Instances

Get properties from component, port, and connector instances.

defaultResources = instance.Components(1).getValue("LatencyProfileC.NodeLatency.resources")

defaultResources = 1

defaultSecure = instance.Connectors(1).getValue("LatencyProfileC.ConnectorLatency.secure")

defaultSecure = logical
 1

defaultQueueDepth = instance.Components(1).Ports(1).getValue("LatencyProfileC.PortLatency.queueDepth")

 instantiate

4-481

defaultQueueDepth = 4.2900

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

properties — Stereotype properties
structure

Stereotype properties, specified as a structure containing profile, stereotype, and property
information. Use properties to specify which stereotypes and properties need to be instantiated.
Data Types: struct

name — Name of instance
character vector | string

Name of instance generated from the model, specified as a character vector or string.
Example: "NewInstance"
Data Types: char | string

profile — Profile name
character vector | string

Profile name, specified as a character vector or string.
Example: 'LatencyProfile'
Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
instantiate(model.Architecture,"LatencyProfile","NewInstance",Function=@calcu
lateLatency,Arguments="3",Strict=true,NormalizeUnits=false,Direction="PreOrde
r")

NormalizeUnits — Whether to normalize value based on units
false or 0 (default) | true or 1

Whether to normalize value based on units, if any, specified in property definition upon instantiation,
specified as a logical.
Example:
instantiate(model.Architecture,'LatencyProfile','NewInstance','NormalizeUnits
',true)

4 Functions

4-482

Data Types: logical

Function — Analysis function
function handle

Analysis function, specified as the MATLAB function handle to be executed when analysis is run.

Arguments — Analysis arguments
cell array of character vectors | array of strings | character vector | string

Analysis arguments, specified as a character vector, string, array of strings, or a cell array of
character vectors of optional arguments to the analysis function.
Data Types: char | string

Direction — Iteration type
"PreOrder" | "PostOrder" | "TopDown" | "BottomUp"

Iteration type, specified as "PreOrder", "PostOrder", "TopDown", or "BottomUp".

• Pre-order — Start from the top level, move to a child component, and process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling, and then
move to parent.

• Bottom-up — Like post-order, but process all subcomponents at the same depth before moving to
their parents.

Data Types: char | string

Strict — Condition for instances getting properties
false or 0 (default) | true or 1

Condition for instances getting properties only if the specification of the instance has the stereotype
applied, specified as a logical.
Data Types: logical

Output Arguments
instance — Architecture instance
architecture instance object

Architecture instance, returned as a systemcomposer.analysis.ArchitectureInstance object.

 instantiate

4-483

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-484

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

 instantiate

4-485

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

4 Functions

4-486

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
systemcomposer.analysis.Instance | deleteInstance | loadInstance | save | update |
iterate

Topics
“Write Analysis Function”

 instantiate

4-487

isArchitecture
Package: systemcomposer.analysis

Find if instance is architecture instance

Syntax
flag = isArchitecture(instance)

Description
flag = isArchitecture(instance) finds whether the instance specified as instance is an
architecture instance.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Query Architecture Instance

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and query
whether the instance is an architecture instance.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
flag = isArchitecture(instance)

flag = logical
 1

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

4 Functions

4-488

Output Arguments
flag — Whether instance is architecture instance
true or 1 | false or 0

Whether instance is architecture instance systemcomposer.analysis.ArchitectureInstance,
returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 isArchitecture

4-489

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-490

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.analysis.Instance | isComponent | isConnector | isPort

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

 isArchitecture

4-491

isComponent
Package: systemcomposer.analysis

Find if instance is component instance

Syntax
flag = isComponent(instance)

Description
flag = isComponent(instance) finds whether the instance specified by instance is a
component instance.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Query Component Instance

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and query
whether the instance modified by the Components property is a component instance.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
flag = isComponent(instance.Components(1))

flag = logical
 1

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

4 Functions

4-492

Output Arguments
flag — Whether instance is component instance
true or 1 | false or 0

Whether instance is component instance systemcomposer.analysis.ComponentInstance,
returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 isComponent

4-493

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-494

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
isArchitecture | isConnector | isPort | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

 isComponent

4-495

isConnector
Package: systemcomposer.analysis

Find if instance is connector instance

Syntax
flag = isConnector(instance)

Description
flag = isConnector(instance) finds whether the instance specified by instance is a
connector instance.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Query Connector Instance

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and query
whether the instance modified by the Connectors property is a connector instance.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
flag = isConnector(instance.Connectors(1))

flag = logical
 1

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

4 Functions

4-496

Output Arguments
flag — Whether instance is connector instance
true or 1 | false or 0

Whether instance is connector instance systemcomposer.analysis.ConnectorInstance,
returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 isConnector

4-497

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-498

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
systemcomposer.analysis.Instance | isArchitecture | isComponent | isPort

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

 isConnector

4-499

IsInRange
Package: systemcomposer.query

Create query to select range of property values

Syntax
query = IsInRange(name,beginRangeValue,endRangeValue)

Description
query = IsInRange(name,beginRangeValue,endRangeValue) creates a query query that the
find and createView functions use to select a range of values from beginRangeValue to
endRangeValue for a specified property name name.

Examples

Find Model Elements that Satisfy Property Range

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query to find components with values from 10 ms to 40 ms for the Latency property.

constraint = IsInRange(PropertyValue("AutoProfile.BaseComponent.Latency"),...
Value(10,"ms"),Value(40,"ms"));
latency = find(model,constraint,Recurse=true,IncludeReferenceModels=true)

latency = 5x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Sound System/Dashboard Speaker' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }

Input Arguments
name — Property name
character vector | string

4 Functions

4-500

Property name for model element, specified in the form "<profile>.<stereotype>.<property>"
or any property on the designated class.
Example: "Name"
Example: "AutoProfile.BaseComponent.Latency"
Data Types: char

beginRangeValue — Beginning range value
value object

Beginning range value for propertyName, specified as a systemcomposer.query.Value object.
Example: Value(20)
Example: Value(5,"ms")

endRangeValue — Ending range value
value object

Ending range value for propertyName, specified as a systemcomposer.query.Value object.
Example: Value(100)
Example: Value(20,"ms")

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

 IsInRange

4-501

Term Definition Application More Information
element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

4 Functions

4-502

isPort
Package: systemcomposer.analysis

Find if instance is port instance

Syntax
flag = isPort(instance)

Description
flag = isPort(instance) finds whether the instance specified by instance is a port instance.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Query Port Instance

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and query
whether the instance modified by the Ports property is a port instance.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
flag = isPort(instance.Ports(1))

flag = logical
 1

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

flag — Whether instance is port instance
true or 1 | false or 0

Whether instance is port instance systemcomposer.analysis.PortInstance, returned as a
logical.

 isPort

4-503

Data Types: logical

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

4 Functions

4-504

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 isPort

4-505

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
isArchitecture | isComponent | isConnector | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”
“Modeling System Architecture of Small UAV”

4 Functions

4-506

isProtected
Package: systemcomposer.arch

Find if component reference model is protected

Syntax
flag = isProtected(compObj)

Description
flag = isProtected(compObj) returns whether or not the referenced model on the component is
protected. A protected model is saved with an SLXP extension.

Examples

Find If Component Reference Model is Protected

Find whether or not the referenced model on the component is protected.

Create a new System Composer model and add a new component.
model = systemcomposer.createModel("archModel");
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");

Create new Simulink reference model and save.
newRef = new_system("newReference","Model");
save_system(newRef);

Protect the Simulink model reference.
Simulink.ModelReference.protect(newRef);

Link the Simulink model to the component newComponent.
linkToModel(newComponent,"newReference.slxp");

Verify that the reference model linked to the component is protected.
flag = isProtected(newComponent)

flag =

 logical

 1

Input Arguments
compObj — Component
component object | variant component object

 isProtected

4-507

Component, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

Output Arguments
flag — Whether referenced model on component is protected
true or 1 | false or 0

Whether referenced model on component is protected, returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-508

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 isProtected

4-509

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-510

Version History
Introduced in R2021b

See Also
inlineComponent | createSimulinkBehavior | createArchitectureModel |
createStateflowChartBehavior | extractArchitectureFromSimulink | linkToModel |
isReference | Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

 isProtected

4-511

isReference
Package: systemcomposer.arch

Find if component is referenced to another model

Syntax
flag = isReference(compObj)

Description
flag = isReference(compObj) returns whether or not the component is a reference to another
model.

Examples

Find If Component Is Reference

Find whether or not the component is a reference to another model.

This component is not a reference.
model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
flag = isReference(newComponent)

flag =

 logical

 0

This component is a reference.
model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
createSimulinkBehavior(newComponent,"newModel");
flag = isReference(newComponent)

flag =

 logical

 1

Input Arguments
compObj — Component
component object | variant component object

Component, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

4 Functions

4-512

Output Arguments
flag — Whether component is reference
true or 1 | false or 0

Whether component is reference, returned as a logical.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

 isReference

4-513

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-514

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

 isReference

4-515

Version History
Introduced in R2019a

See Also
inlineComponent | createSimulinkBehavior | createArchitectureModel |
createStateflowChartBehavior | extractArchitectureFromSimulink | linkToModel |
Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

4 Functions

4-516

IsStereotypeDerivedFrom
Package: systemcomposer.query

Create query to select stereotype derived from qualified name

Syntax
query = IsStereotypeDerivedFrom(name)

Description
query = IsStereotypeDerivedFrom(name) creates a query query that the find and
createView functions use to select a stereotype from the qualified name name.

Examples

Construct Query to Select All Hardware Components

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query for all the hardware components and run the query, displaying one of them.

constraint = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));
hwComp = find(model,constraint,Recurse=true,IncludeReferenceModels=true);
comp = hwComp(16)

comp = 1×1 cell array
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor'}

Input Arguments
name — Stereotype name
character vector | string

Stereotype name, specified in the form "<profile>.<stereotype>".
Example: "AutoProfile.BaseComponent"
Data Types: char | string

 IsStereotypeDerivedFrom

4-517

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-518

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | HasStereotype |
getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

 IsStereotypeDerivedFrom

4-519

iterate
Package: systemcomposer.arch

Iterate over model elements

Syntax
iterate(arch,iterType,iterFunction)
iterate(___ ,Name,Value)
iterate(___ ,Name,Value,additionalArgs)

Description
iterate(arch,iterType,iterFunction) iterates over components in the architecture arch in
the order specified by iterType and invokes the function specified by the function handle
iterFunction on each component.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

iterate(___ ,Name,Value) iterates over components in the architecture using all previous
syntaxes with additional options.

iterate(___ ,Name,Value,additionalArgs) iterates over components in the architecture with
additional options and passes all trailing arguments, specified as additionalArgs, as arguments to
iterFunction. Name-value arguments with additionalArgs must be specified as comma-
separated name-value pairs.

Examples

Compute Battery Capacity

For more information on the battery sizing example, see “Battery Sizing and Automotive Electrical
System Analysis”.

openExample("systemcomposer/BatterySizingAndAutomotiveAnalysisExample")
archModel = systemcomposer.openModel("scExampleAutomotiveElectricalSystemAnalysis");
% Instantiate battery sizing class used by analysis function to store
% analysis results.
objcomputeBatterySizing = computeBatterySizing;
% Run the analysis using the iterator
iterate(archModel,"TopDown",@computeLoad,"Recurse",true,objcomputeBatterySizing);

Input Arguments
arch — Architecture over which to iterate
architecture object | architecture instance object

4 Functions

4-520

Architecture over which to iterate, specified as an systemcomposer.arch.Architecture or
systemcomposer.analysis.ArchitectureInstance object.

iterType — Iteration type
"PreOrder" | "PostOrder" | "TopDown" | "BottomUp"

Iteration type, specified as "PreOrder", "PostOrder", "TopDown", or "BottomUp".

• Pre-order — Start from the top level, move to a child component, and process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling, and then
move to parent.

• Bottom-up — Like post-order, but process all subcomponents at the same depth before moving to
their parents.

Data Types: char | string

iterFunction — Iteration function
function handle

Iteration function, specified as a function handle to be iterated on each component.

additionalArgs — Additional function arguments
comma-separated list of function arguments

Additional function arguments, specified as a comma-separated list of arguments to be passed to
iterFunction.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
iterate(archModel,"TopDown",@computeLoad,"Recurse",true,objcomputeBatterySizi
ng)

Recurse — Option to recursively iterate through model components
true or 1 (default) | false or 0

Option to recursively iterate through model components, specified as a logical 1 (true) to recursively
iterate or 0 (false) to iterate over components only in this architecture and not navigate into the
architectures of child components.

Recurse only applies to systemcomposer.arch.Architecture objects.
Data Types: logical

IncludePorts — Option to iterate over components and architecture ports
false or 0 (default) | true or 1

 iterate

4-521

Option to iterate over components and architecture ports, specified as a logical 0 (false) to only
iterate over components or 1 (true) to iterate over components and architecture ports.
Data Types: logical

IncludeConnectors — Option to iterate over components and connectors
false or 0 (default) | true or 1

Option to iterate over components and connectors, specified as a logical 0 (false) to only iterate
over components or 1 (true) to iterate over components and connectors.

IncludeConnectors only applies to systemcomposer.analysis.ArchitectureInstance
objects.
Data Types: logical

FollowConnectivity — Option to ensure iteration order
false or 0 (default) | true or 1

Option to ensure iteration order according to how components are connected from source to
destination, specified as a logical 0 (false) or 1 (true). If this option is specified as 1 (true),
iteration type iterType has to be either "TopDown" or "BottomUp". If any other option is specified,
the iteration type defaults to "TopDown".

FollowConnectivity only applies to systemcomposer.arch.Architecture objects.
Data Types: logical

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-522

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 iterate

4-523

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
instantiate | lookup | systemcomposer.analysis.Instance

Topics
“Analyze Architecture”

4 Functions

4-524

linkDictionary
Package: systemcomposer.arch

Link data dictionary to architecture model

Syntax
linkDictionary(model,dictionaryFile)

Description
linkDictionary(model,dictionaryFile) associates the specified Simulink data dictionary with
the model. The model cannot have locally defined interfaces.

Examples

Link Data Dictionary

Link a data dictionary to a model.

model = systemcomposer.createModel("newModel",true);
dictionary = systemcomposer.createDictionary("newDictionary.sldd");
linkDictionary(model,"newDictionary.sldd");
save(dictionary);
save(model);

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

dictionaryFile — Dictionary file name
character vector | string

Dictionary file name with the .sldd extension, specified as a character vector or string. If a
dictionary with this name does not exist, one will be created.
Example: "dict_name.sldd"
Data Types: char | string

 linkDictionary

4-525

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-526

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

 linkDictionary

4-527

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-528

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
createDictionary | saveToDictionary | unlinkDictionary | openDictionary |
addReference | removeReference

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 linkDictionary

4-529

linkToModel
Package: systemcomposer.arch

Link component to model

Syntax
modelHandle = linkToModel(component,modelName)
modelHandle = linkToModel(component,modelFileName)

Description
modelHandle = linkToModel(component,modelName) links from the component to a model or
subsystem.

modelHandle = linkToModel(component,modelFileName) links from the component to a
model or subsystem defined by its full file name with an SLX or SLXP extension.

Examples

Reuse Component

Save the component named robotComp in the architecture model Robot.slx and reference it from
another component named electricComp so that the component electricComp uses the
architecture of the component robotComp.

Create a model archModel.slx.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");

Add two components to the model with the names electricComp and robotComp.

names = ["electricComp","robotComp"];
comp = addComponent(arch,names);

Save robotComp in the Robot.slx model so the component references the model.

saveAsModel(comp(2),"Robot");

Link the electricComp component to the same model Robot.slx so it uses the architecture of the
original robotComp component and references the architecture model Robot.slx.

linkToModel(comp(1),"Robot");

Clean up the model.

4 Functions

4-530

Simulink.BlockDiagram.arrangeSystem("archModel");

Input Arguments
component — Component
component object

Component with no sub-components, specified as a systemcomposer.arch.Component object.

modelName — Model or subsystem name
character vector | string

Model or subsystem name for an existing model or subsystem that defines the architecture or
behavior of the component, specified as a character vector or string. Models or subsystems of the
same name prioritize protected models with the SLXP extension.
Example: "Robot"
Data Types: char | string

modelFileName — Model or subsystem file name
character vector | string

Model or subsystem file name for an existing model or subsystem that defines the architecture or
behavior of the component, specified as a character vector or string.
Example: "Model.slx"
Example: "ProtectedModel.slxp"
Data Types: char | string

Output Arguments
modelHandle — Handle to linked model or subsystem
numeric value

Handle to linked model or subsystem, returned as a numeric value.
Data Types: double

 linkToModel

4-531

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-532

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

 linkToModel

4-533

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2019a

See Also
inlineComponent | createSimulinkBehavior | createArchitectureModel |
createStateflowChartBehavior | extractArchitectureFromSimulink | isReference |
Reference Component

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”
“Implement Component Behavior Using Stateflow Charts”
“Create Simulink Subsystem Behavior Using Subsystem Component”
“Simulate and Deploy Software Architectures”

4 Functions

4-534

systemcomposer.allocation.load
Load allocation set

Syntax
allocSet = systemcomposer.allocation.load(name)

Description
allocSet = systemcomposer.allocation.load(name) loads the allocation set with the given
name, if it exists on the MATLAB path.

Examples

Load Allocation Set and Open in Allocation Editor

Create two new models with a component each.

mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.

allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.

defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.

allocation = allocate(defaultScenario,sourceComp,targetComp);

Save the allocation set.

save(allocSet)

Close the allocation set.

close(allocSet)

Load the allocation set MyNewAllocation.mldatx.

allocSet = systemcomposer.allocation.load("MyNewAllocation");

Open the Allocation Editor.

 systemcomposer.allocation.load

4-535

systemcomposer.allocation.editor

Input Arguments
name — Name of allocation set
character vector | string

Name of allocation set, specified as a character vector or string.
Example: "MyNewAllocation"
Data Types: char | string

Output Arguments
allocSet — Allocation set
allocation set object

Allocation set, returned as a systemcomposer.allocation.AllocationSet object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

4 Functions

4-536

See Also
createAllocationSet | open | closeAll

Topics
“Create and Manage Allocations Programmatically”

 systemcomposer.allocation.load

4-537

systemcomposer.profile.Profile.load
Load profile from file

Syntax
profile = systemcomposer.profile.Profile.load(profileName)

Description
profile = systemcomposer.profile.Profile.load(profileName) loads a profile from a file
name.

Examples

Load Profile

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Load the profile into another variable.
newProfile = systemcomposer.profile.Profile.load("LatencyProfile")

newProfile =

 Profile with properties:

 Name: 'LatencyProfile'
 FriendlyName: ''
 Description: ''
 Stereotypes: [1×5 systemcomposer.profile.Stereotype]

Input Arguments
profileName — Name of profile
character vector | string

4 Functions

4-538

Name of profile, specified as a character vector or string. Profile must be available on the MATLAB
path with a .xml extension.
Example: "LatencyProfile"
Data Types: char | string

Output Arguments
profile — Profile
profile object

Profile, returned as a systemcomposer.profile.Profile object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

 systemcomposer.profile.Profile.load

4-539

Term Definition Application More Information
profile A profile is a package of

stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
systemcomposer.profile.Profile | open | editor | save | find | closeAll | close |
createProfile

Topics
“Define Profiles and Stereotypes”

4 Functions

4-540

systemcomposer.analysis.loadInstance
Load architecture instance

Syntax
instance = systemcomposer.analysis.loadInstance(fileName,overwrite)

Description
instance = systemcomposer.analysis.loadInstance(fileName,overwrite) loads an
architecture instance from a MAT-file.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Load Architecture Instance from MAT-File

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Instantiate all stereotypes in the profile.
model = systemcomposer.createModel("archModel",true);
instance = instantiate(model.Architecture,"LatencyProfile","NewInstance");

Save the architecture instance.
instance.save("InstanceFile");

Delete the architecture instance.
systemcomposer.analysis.deleteInstance(instance);

 systemcomposer.analysis.loadInstance

4-541

Load the architecture instance.
loadedInstance = systemcomposer.analysis.loadInstance("InstanceFile");

Input Arguments
fileName — MAT-file that contains architecture instance
character vector | string

MAT-file that contains architecture instance, specified as a character vector or string.
Data Types: char | string

overwrite — Whether to overwrite instance if it already exists in workspace
true or 1 | false or 0

Whether to overwrite instance if it already exists in workspace, specified as a logical 1 (true) so the
load operation overwrites duplicate instances in the workspace or 0 (false) if not.

Output Arguments
instance — Loaded architecture instance
architecture instance object

Loaded architecture instance, returned as a
systemcomposer.analysis.ArchitectureInstance object.

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

4 Functions

4-542

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
instantiate | systemcomposer.analysis.Instance | deleteInstance | save | refresh |
update

Topics
“Write Analysis Function”

 systemcomposer.analysis.loadInstance

4-543

systemcomposer.loadModel
Load System Composer model

Syntax
model = systemcomposer.loadModel(modelName)

Description
model = systemcomposer.loadModel(modelName) loads the architecture model with name
modelName and returns the systemcomposer.arch.Model object. The loaded model is not
displayed. The architecture model must exist on the MATLAB path.

Examples

Load Model

Create, save, and load a model. Display the model's properties.

model = systemcomposer.createModel("new_arch",true);
model.save;
loadedModel = systemcomposer.loadModel("new_arch")

loadedModel =

 model with properties:

 Name: 'new_arch'
 Architecture: [1×1 systemcomposer.arch.Architecture]
 SimulinkHandle: 2.0005
 Views: [0×0 systemcomposer.view.ViewArchitecture]
 Profiles: [0×0 systemcomposer.profile.Profile]
 InterfaceDictionary: [1×1 systemcomposer.interface.Dictionary]

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

Output Arguments
model — Architecture model
model object

4 Functions

4-544

Architecture model, returned as a systemcomposer.arch.Model object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.loadModel

4-545

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
save | open | systemcomposer.createModel

Topics
“Create Architecture Model”

4 Functions

4-546

systemcomposer.loadProfile
Load profile by name

Syntax
profile = systemcomposer.loadProfile(profileName)

Description
profile = systemcomposer.loadProfile(profileName) loads a profile with the specified file
name.

Examples

Load Profile

Create a model.

model = systemcomposer.createModel("archModel",true);

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Save the profile and load the profile. In this example, profileNew is equal to profile.
save(profile);
profileNew = systemcomposer.loadProfile("LatencyProfile");

Input Arguments
profileName — Name of profile
character vector | string

Name of profile, specified as a character vector or string. Profile must be available on the MATLAB
path with a .xml extension.
Example: "LatencyProfile"
Data Types: char | string

Output Arguments
profile — Profile
profile object

 systemcomposer.loadProfile

4-547

Profile, returned as a systemcomposer.profile.Profile object.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

4 Functions

4-548

See Also
applyProfile | createProfile | editor | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

 systemcomposer.loadProfile

4-549

lookup
Package: systemcomposer.arch

Search for architectural element

Syntax
element = lookup(object,Name,Value)
instance = lookup(object,Name,Value)

Description
element = lookup(object,Name,Value) finds an architectural element based on its universal
unique identifier (UUID) or full path.

instance = lookup(object,Name,Value) finds an architectural element instance based on its
universal unique identifier (UUID) or full path.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Look Up Component by Path

This example shows how to find a component by path in a robot model.

arch = systemcomposer.loadModel("Robot");
component = lookup(arch,Path="Robot/Sensor")

component =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'Sensor'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [1x2 systemcomposer.arch.ComponentPort]
 OwnedPorts: [1x2 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [349 74 469 174]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 10.0021
 SimulinkModelHandle: 0.0023
 UUID: 'cfd62628-d365-47e4-8492-62cfeaa8dc15'
 ExternalUID: ''

4 Functions

4-550

Input Arguments
object — Architecture model or instance object
model object | architecture instance object

Architecture model or instance object to look up, specified as a systemcomposer.arch.Model or
systemcomposer.analysis.ArchitectureInstance object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lookup(arch,Path="Robot/Sensor")

UUID — UUID
character vector | string

UUID to use for search, specified as a character vector or string of the UUID.
Example: lookup(arch,UUID="f43c9d51-9dc6-43fc-b3af-95d458b81248")
Data Types: char | string

SimulinkHandle — Simulink handle
double

Simulink handle to use for search, specified as the SimulinkHandle value.
Example: lookup(arch,SimulinkHandle=9.0002)
Data Types: double

Path — Full path
character vector | string

Full path, specified as a character vector or string.
Example: lookup(arch,Path="Robot/Sensor")
Data Types: char | string

Output Arguments
element — Model element
architecture object | component object | port object | connector object | physical connector object |
data interface object | value type object | physical interface object

Model element, returned as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,

 lookup

4-551

systemcomposer.interface.DataInterface, systemcomposer.ValueType, or
systemcomposer.interface.PhysicalInterface object.

instance — Element instance
component instance | port instance | connector instance

Element instance, returned as a systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-552

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

 lookup

4-553

Term Definition Application More Information
analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
find | createView | getQualifiedName | systemcomposer.view.ElementGroup |
systemcomposer.analysis.Instance | iterate | instantiate

Topics
“Analyze Architecture”
“Create Architectural Views Programmatically”

4 Functions

4-554

makeOwnedInterfaceShared
Package: systemcomposer.arch

Convert owned interface to shared interface

Syntax
makeOwnedInterfaceShared(archPort,newInterfaceName)

Description
makeOwnedInterfaceShared(archPort,newInterfaceName) converts an owned interface on
the port archPort into a shared interface with name newInterfaceName in the interface data
dictionary used in the architecture model.

Examples

Make Owned Interface Shared

Create an architecture port on a component in an architecture model.
modelName = "archModel";
model = systemcomposer.createModel(modelName,true);
comp = model.Architecture.addComponent("Component1");
inport = comp.Architecture.addPort("InBus","in");

Add a shared interface to the model.
interfaceDict = model.InterfaceDictionary;
SharedInterface = interfaceDict.addInterface("SharedInterface");
SharedInterface.addElement("SharedElem_X");
SharedInterface.addElement("SharedElem_Y");

Create an owned interface on the architecture port.
ownedInterface = inport.createInterface("DataInterface");
ownedInterface.removeElement("elem0");
elemA = ownedInterface.addElement("A");
ownedInterface.addElement("B",DataType="single",Dimensions="1",...
Units="m",Complexity="real",Maximum="200",Minimum="0",...
Description="Length value");

Convert the owned interface to a shared interface.
convertedInterface = inport.makeOwnedInterfaceShared("convertedInterface")

convertedInterface =

 DataInterface with properties:

 Owner: [1×1 systemcomposer.interface.Dictionary]
 Name: 'convertedInterface'
 Elements: [1×2 systemcomposer.interface.DataElement]
 Model: [1×1 systemcomposer.arch.Model]

 makeOwnedInterfaceShared

4-555

 UUID: '59a41ae1-e04d-479c-81e6-881230bad662'
 ExternalUID: ''

Input Arguments
archPort — Architecture port
architecture port object

Architecture port, specified as a systemcomposer.arch.ArchitecturePort object.

newInterfaceName — New interface name
character vector | string

New interface name, specified as a character vector or string.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

4 Functions

4-556

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 makeOwnedInterfaceShared

4-557

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

See Also
createModel | createInterface | addElement | addInterface | addValueType

Topics
“Define Port Interfaces Between Components”
“Assign Interfaces to Ports”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-558

makeVariant
Package: systemcomposer.arch

Convert component to variant choice

Syntax
[variantComp,choices] = makeVariant(component)
[variantComp,choices] = makeVariant(component,Name,Value)

Description
[variantComp,choices] = makeVariant(component) converts the component component to a
variant choice component and returns the parent Variant Component block object variantComp and
available variant choice components choices.

[variantComp,choices] = makeVariant(component,Name,Value) converts the component
component to a variant choice component with additional options and returns the parent Variant
Component block object variantComp and available variant choice components choices.

Examples

Make Variant Component

Create a top-level architecture model.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
rootArch = get(arch,"Architecture");

Create a new component.

newComponent = addComponent(rootArch,"Component");

Add ports to the component.

inPort = addPort(newComponent.Architecture,"testSig","in");
outPort = addPort(newComponent.Architecture,"testSig","out");

Make the component into a variant component.

[variantComp,choices] = makeVariant(newComponent)

variantComp =
 VariantComponent with properties:

 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'Component'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [1x2 systemcomposer.arch.ComponentPort]
 OwnedPorts: [1x2 systemcomposer.arch.ComponentPort]

 makeVariant

4-559

 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [15 15 65 83]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 207.0020
 SimulinkModelHandle: 0.0024
 UUID: 'b32a5b3d-3493-4f3f-baab-f9d99f866a41'
 ExternalUID: ''

choices =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'Component'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [1x2 systemcomposer.arch.ComponentPort]
 OwnedPorts: [1x2 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Parameters: [0x0 systemcomposer.arch.Parameter]
 Position: [50 20 100 80]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 2.0188
 SimulinkModelHandle: 0.0024
 UUID: '352b8000-7881-41e1-8ec3-0287bc6d94ab'
 ExternalUID: ''

Input Arguments
component — Component
component object

Component to be converted to variant choice component, specified as a
systemcomposer.arch.Component object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [variantComp,choices] =
makeVariant(newComponent,Name="NewVariantComponent",Label="NewVariantChoice",
Choices=["NewVariantChoiceA","NewVariantChoiceB","NewVariantChoiceC"],ChoiceL
abels=["Choice A","Choice B","Choice C"])

Name — Name of variant component
character vector | string

Name of variant component, specified as a character vector or string.

4 Functions

4-560

Example: [variantComp,choices] =
makeVariant(newComponent,Name="NewVariantComponent")

Data Types: char | string

Label — Label of variant choice
character vector | string

Label of variant choice from converted component, specified as a character vector or string.
Example: [variantComp,choices] =
makeVariant(newComponent,Name="NewVariantComponent",Label="NewVariantChoice")

Data Types: char | string

Choices — Variant choice names
cell array of character vectors | array of strings

Variant choice names, specified as a cell array of character vectors or an array of strings. Additional
variant choices are also added to the new variant component, along with the active choice from the
converted component.
Example: [variantComp,choices] =
makeVariant(newComponent,Choices=["NewVariantChoiceA","NewVariantChoiceB","Ne
wVariantChoiceC"])

Data Types: char | string

ChoiceLabels — Variant choice labels
cell array of character vectors | array of strings

Variant choice labels, specified as a cell array of character vectors or an array of strings.
Example: [variantComp,choices] =
makeVariant(newComponent,Choices=["NewVariantChoiceA","NewVariantChoiceB","Ne
wVariantChoiceC"],ChoiceLabels=["Choice A","Choice B","Choice C"])

Data Types: char | string

Output Arguments
variantComp — Variant component
variant component object

Variant component, returned as a systemcomposer.arch.VariantComponent object.

choices — Variant choices
array of component objects

Variant choices, returned as an array of systemcomposer.arch.Component objects.
Data Types: char

 makeVariant

4-561

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-562

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
addChoice | getChoices | Variant Component | addVariantComponent

Topics
“Create Variants”

 makeVariant

4-563

modifyQuery
Package: systemcomposer.view

Modify architecture view query and property groupings

Syntax
modifyQuery(view,select)
modifyQuery(view,select,groupBy)

Description
modifyQuery(view,select) modifies the query select on the view view.

modifyQuery(view,select,groupBy) modifies the query select on the view view and the
property based groupings groupBy.

Examples

Modify Query and Remove Groupings

Open the keyless entry system example and create a view. Specify the color as light blue, the query as
all components, and group by the review status.

import systemcomposer.query.*

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("All Components Grouped by Review Status",...
 Color="lightblue",Select=AnyComponent,...
 GroupBy="AutoProfile.BaseComponent.ReviewStatus");

Open the Architecture Views Gallery to see the new view All Components Grouped by Review
Status.

model.openViews

Create a new query for all hardware components. Use the new query to modify the existing query on
the view. Remove the property based groupings by passing in an empty cell array {}. Observe the
change in your view.

constraint = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));
view.modifyQuery(constraint,{})

Input Arguments
view — Architecture view
view object

4 Functions

4-564

Architecture view, specified as a systemcomposer.view.View object.

select — Query
constraint object

Query to use to populate view, specified as a systemcomposer.query.Constraint object.

A constraint can contain a subconstraint that can be joined with another constraint using AND or OR.
A constraint can be negated using NOT.
Example:
HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"))

Query Objects and Conditions for Constraints

Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasConnector A component has a connector that satisfies the

given subconstraint.
HasPort A component has a port that satisfies the given

subconstraint.
HasInterface A port has an interface that satisfies the given

subconstraint.
HasInterfaceElement An interface has an interface element that

satisfies the given subconstraint.
HasStereotype An architecture element has a stereotype that

satisfies the given subconstraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

groupBy — Grouping criteria
cell array of character vectors | empty cell array

Grouping criteria, specified as a cell array of character vectors in the form
'<profile>.<stereotype>.<property>'. The order of the cell array dictates the order of the
grouping. If an empty cell array {} is passed into groupBy, all the groupings are removed.
Example:
{'AutoProfile.MechanicalComponent.mass','AutoProfile.MechanicalComponent.cost
'}

Data Types: char

 modifyQuery

4-565

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-566

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews | runQuery |
removeQuery | systemcomposer.view.ElementGroup | getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 modifyQuery

4-567

open
Package: systemcomposer.profile

Open profile

Syntax
open(profile)

Description
open(profile) opens a profile in the Profile Editor.

Examples

Open Profile

Create a profile for latency characteristics and save it.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Open the profile in the Profile Editor.

open(profile)

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

4 Functions

4-568

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
createProfile | find | editor | save | load | close | closeAll

 open

4-569

Topics
“Define Profiles and Stereotypes”

4 Functions

4-570

systemcomposer.allocation.open
Open allocation set in Allocation Editor

Syntax
allocSet = systemcomposer.allocation.open(name)

Description
allocSet = systemcomposer.allocation.open(name) opens allocation set specified by name
in the Allocation Editor. The allocation set must be on the MATLAB path.

Examples

Create and Open Allocation Set

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Save the allocation set.
save(allocSet)

Open the Allocation Editor with the allocation set highlighted.
systemcomposer.allocation.open(allocSet);

Input Arguments
name — Name of allocation set
allocation set object | character vector | string

Name of allocation set, specified as an systemcomposer.allocation.AllocationSet object,
character vector, or string.
Data Types: char | string

 systemcomposer.allocation.open

4-571

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createAllocationSet | load

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-572

open
Package: systemcomposer.arch

Open architecture model

Syntax
open(model)

Description
open(model) opens the specified model in System Composer.

Examples

Create and Open Model

model = systemcomposer.createModel("modelName");
open(model)

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 open

4-573

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-574

Version History
Introduced in R2019a

See Also
createModel | openModel

Topics
“Create Architecture Model”

 open

4-575

systemcomposer.openDictionary
Open data dictionary

Syntax
dictionary = systemcomposer.openDictionary(dictionaryName)

Description
dictionary = systemcomposer.openDictionary(dictionaryName) opens an existing
Simulink data dictionary to hold interfaces and returns the
systemcomposer.interface.Dictionary object.

Examples

Open Existing Dictionary

Create a dictionary and open the dictionary.

systemcomposer.createDictionary("my_dictionary.sldd");
dictionary = systemcomposer.openDictionary("my_dictionary.sldd");

Input Arguments
dictionaryName — Name of existing data dictionary
character vector | string

Name of existing data dictionary, specified as a character vector or string. The name must include
the .sldd extension.
Example: "my_dictionary.sldd"
Data Types: char | string

Output Arguments
dictionary — Dictionary
dictionary object

Dictionary, returned as a systemcomposer.interface.Dictionary object.

4 Functions

4-576

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 systemcomposer.openDictionary

4-577

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

4 Functions

4-578

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 systemcomposer.openDictionary

4-579

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
linkDictionary | saveToDictionary | unlinkDictionary | createDictionary |
addReference | removeReference

Topics
“Define Port Interfaces Between Components”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-580

systemcomposer.openModel
Open System Composer model

Syntax
model = systemcomposer.openModel(modelName)

Description
model = systemcomposer.openModel(modelName) opens the architecture model with name
modelName for editing and returns the systemcomposer.arch.Model object. The model must exist
on the MATLAB path.

Examples

Open Model

Create, save, and close a model. Open the model and display the model's properties.

model = systemcomposer.createModel("new_arch");
model.close;
model.save;
openedModel = systemcomposer.openModel("new_arch")

openedModel =

 model with properties:

 Name: 'new_arch'
 Architecture: [1×1 systemcomposer.arch.Architecture]
 SimulinkHandle: 2.0005
 Views: [0×0 systemcomposer.view.ViewArchitecture]
 Profiles: [0×0 systemcomposer.profile.Profile]
 InterfaceDictionary: [1×1 systemcomposer.interface.Dictionary]

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

Output Arguments
model — Architecture model
model object

 systemcomposer.openModel

4-581

Architecture model, returned as a systemcomposer.arch.Model object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-582

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
open | close

Topics
“Create Architecture Model”

 systemcomposer.openModel

4-583

openViews
Package: systemcomposer.arch

Open Architecture Views Gallery

Syntax
openViews(model)

Description
openViews(model) opens the Architecture Views Gallery for the specified model, model. If the
model is already open, openViews will bring the views to the front.

Examples

Open Views Editor

Open the keyless entry system example and create a view. Open the Architecture Views Gallery for
the model.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
fobSupplierView = model.createView("FOB Locator System Supplier Breakdown",...
 Color="lightblue");
openViews(model)

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

4 Functions

4-584

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 openViews

4-585

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

4 Functions

4-586

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
systemcomposer.view.View | createView | getView | deleteView |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 openViews

4-587

Property
Package: systemcomposer.query

Create query to select non-evaluated values for object properties or stereotype properties for
elements

Syntax
query = Property(name)

Description
query = Property(name) creates a query query that the find and createView functions use to
select non-evaluated values for object properties or stereotype properties for elements based on a
specified property name name.

Examples

Find Model Elements that Satisfy Property

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query to find components that contain Sensor in their Name property and run the query,
displaying the first.

constraint = contains(Property("Name"),"Sensor");
sensors = find(model,constraint,Recurse=true,IncludeReferenceModels=true);
query = sensors(1)

query = 1x1 cell array
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor/Door Lock Sensor'}

Input Arguments
name — Property name
character vector | string

Property name for model element, specified in the form "<profile>.<stereotype>.<property>"
or any property on the designated class.

4 Functions

4-588

Example: "Name"
Example: "AutoProfile.BaseComponent.Latency"
Data Types: char

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 Property

4-589

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | PropertyValue |
getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

4 Functions

4-590

PropertyValue
Package: systemcomposer.query

Create query to select property from object or stereotype property and then evaluate property value

Syntax
query = PropertyValue(name)

Description
query = PropertyValue(name) creates a query query that the find and createView functions
use to select object properties or stereotype properties for elements based on specified property
name name and then evaluate the property value.

Examples

Find Model Elements that Satisfy Property Value

Import the package that contains all of the System Composer™ queries.

import systemcomposer.query.*

Open the Simulink® project file for the keyless entry system.

scKeylessEntrySystem

Load the architecture model.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Create a query to find components with a Latency property value of 30 and run the query.

constraint = PropertyValue("AutoProfile.BaseComponent.Latency")==30;
latency = find(model,constraint,Recurse=true,IncludeReferenceModels=true)

latency = 4x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }

Input Arguments
name — Property name
character vector | string

Property name for model element, specified in the form "<profile>.<stereotype>.<property>"
or any property on the designated class.

 PropertyValue

4-591

Example: "Name"
Example: "AutoProfile.BaseComponent.Latency"
Data Types: char

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-592

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2019b

See Also
createView | find | systemcomposer.query.Constraint | Property | getQualifiedName

Topics
“Create Architectural Views Programmatically”
“Modeling System Architecture of Keyless Entry System”

 PropertyValue

4-593

refresh
Package: systemcomposer.analysis

Refresh architecture instance

Syntax
refresh(instance)

Description
refresh(instance) refreshes an architecture instance instance to mirror the changes in the
specification model. The refresh method is part of the
systemcomposer.analysis.ArchitectureInstance class.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Refresh Architecture Instance

Refresh an architecture instance to mirror the changes in the specification model.

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Instantiate all stereotypes in a profile.
model = systemcomposer.createModel("archModel",true);
instance = instantiate(model.Architecture,"LatencyProfile","NewInstance");

Apply the profile to the model. Apply the stereotype to the architecture.

4 Functions

4-594

model.applyProfile("LatencyProfile");
model.Architecture.applyStereotype("LatencyProfile.LatencyBase");

Refresh the architecture instance according to the specification model. Get the default value for the
"dataRate" property on the architecture instance.
instance.refresh;
value = instance.getValue("LatencyProfile.LatencyBase.dataRate")

value =

 10

Input Arguments
instance — Architecture instance
architecture instance object

Architecture instance to be refreshed, specified as a
systemcomposer.analysis.ArchitectureInstance object.

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

 refresh

4-595

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
instantiate | systemcomposer.analysis.Instance | loadInstance | deleteInstance |
update | save | lookup | iterate

Topics
“Write Analysis Function”

4 Functions

4-596

removeComponent
Package: systemcomposer.view

(Removed) Remove component from view

Note The removeComponent function has been removed. You can create a view using the
createView function with a selection query, remove the query using the removeQuery function, and
remove a component using the removeElement function. For further details, see “Compatibility
Considerations”.

Syntax
removeComponent(object,compPath)

Description
removeComponent(object,compPath) removes the component with the specified path.

removeComponent is a method from the class systemcomposer.view.ViewArchitecture.

Examples

Remove Component from View

Create a model, extract its architecture, and add three components.

model = systemcomposer.createModel('mobileRobotAPI');
arch = model.Architecture;
components = addComponent(arch,{'Sensor','Planning','Motion'});

Create a view architecture, a view component, and add a component. Open the Architecture Views
Gallery to view the component.

view = model.createViewArchitecture('NewView');
viewComp = fobSupplierView.createViewComponent('ViewComp');
viewComp.Architecture.addComponent('mobileRobotAPI/Motion');
openViews(model);

Remove the component from the view and check the Architecture Views Gallery.

viewComp.Architecture.removeComponent('mobileRobotAPI/Motion');

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

 removeComponent

4-597

compPath — Path to component
character vector

Path to component, including the name of the top-level model, specified as a character vector.
Data Types: char

Version History
Introduced in R2019b

R2021a: removeComponent function has been removed
Errors starting in R2021a

The removeComponent function is removed in R2021a with the introduction of new views APIs. For
more information on how to create and edit a view programmatically, see “Create Architectural Views
Programmatically”.

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-598

removeElement
Package: systemcomposer.interface

Remove element

Syntax
removeElement(interface,name)

Description
removeElement(interface,name) removes an element with name name from an interface
interface.

Examples

Remove Data Element from Data Interface

Add a data interface newInterface to the interface dictionary of the model. Add a data element
newElement with data type double to the data interface, then remove the data element.

arch = systemcomposer.createModel("newModel",true);
interface = addInterface(arch.InterfaceDictionary,"newInterface");
element = addElement(interface,"newElement",DataType="double");
removeElement(interface,"newElement")

Remove Physical Element from Physical Interface

Add a physical interface newPhysicalInterface to the interface dictionary of the model. Add a
physical element newElement with domain type electrical.electrical to the physical interface,
then remove the physical element.
arch = systemcomposer.createModel("newModel",true);
interface = addPhysicalInterface(arch.InterfaceDictionary,"newPhysicalInterface");
element = addElement(interface,"newElement",Type="electrical.electrical");
removeElement(interface,"newElement")

Input Arguments
interface — Interface
data interface object | physical interface object | service interface object

Interface, specified as a systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

name — Element name
character vector | string

 removeElement

4-599

Element name, specified as a character vector or string. An element name must be a valid MATLAB
variable name.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

4 Functions

4-600

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

 removeElement

4-601

See Also
addElement | createDictionary | getElement | getInterfaceNames | getInterface |
linkDictionary | getSourceElement | getDestinationElement | unlinkDictionary

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-602

removeElement
Package: systemcomposer.view

Remove component from element group of view

Syntax
removeElement(elementGroup,component)

Description
removeElement(elementGroup,component) adds the component component to the element
group elementGroup of an architecture view.

Note This function cannot be used when a selection query or grouping is defined on the view. To
remove the query, run removeQuery.

Examples

Add Elements to View and Remove Elements from View

Open the keyless entry system example and create a view, newView.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("newView");

Open the Architecture Views Gallery to see newView.

model.openViews

Add an element to the view by path.

view.Root.addElement("KeylessEntryArchitecture/Lighting System/Headlights")

Add an element to the view by object.

component = model.lookup(Path="KeylessEntryArchitecture/Lighting System/Cabin Lights");
view.Root.addElement(component)

Remove an element to the view by path.

view.Root.removeElement("KeylessEntryArchitecture/Lighting System/Headlights")

Remove an element to the view by object.

view.Root.removeElement(component)

 removeElement

4-603

Input Arguments
elementGroup — Element group
element group object

Element group for view, specified as a systemcomposer.view.ElementGroup object.

component — Component
component object | variant component object | array of component objects | array of variant
component objects | path to component | cell array of component paths

Component to remove from view, specified as a systemcomposer.arch.Component object, a
systemcomposer.arch.VariantComponent object, an array of
systemcomposer.arch.Component objects, an array of
systemcomposer.arch.VariantComponent objects, the path to a component, or a cell array of
component paths.
Example: "KeylessEntryArchitecture/Lighting System/Headlights"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

4 Functions

4-604

Term Definition Application More Information
component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
lookup | openViews | createView | getView | deleteView |
systemcomposer.view.ElementGroup | systemcomposer.view.View | addElement |
getSubGroup | deleteSubGroup | createSubGroup | getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 removeElement

4-605

removeInterface
Package: systemcomposer.interface

Remove named interface from interface dictionary

Syntax
removeInterface(dictionary,name)

Description
removeInterface(dictionary,name) removes the interface specified by name from the interface
dictionary dictionary.

Examples

Remove Interface

Create a new model. Add a data interface newInterface to the interface dictionary of the model.

arch = systemcomposer.createModel("archModel");
addInterface(arch.InterfaceDictionary,"newInterface");

Open the model, then open the Interface Editor. Confirm that an interface newInterface exists.

open(arch)

Remove the interface.

removeInterface(arch.InterfaceDictionary,"newInterface");

View the Interface Editor. Confirm that newInterface is removed.

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

name — Name of interface
character vector | string

Name of interface to be removed, specified as a character vector or string.
Example: "newInterface"

4 Functions

4-606

Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 removeInterface

4-607

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

4 Functions

4-608

Term Definition Application More Information
physical port A physical port represents a

Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
addInterface | addValueType | addPhysicalInterface | addServiceInterface |
getInterface | getInterfaceNames | Adapter

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 removeInterface

4-609

removeProfile
Package: systemcomposer.arch

Remove profile from model

Syntax
removeProfile(model,profileName)

Description
removeProfile(model,profileName) removes the profile from a model.

Examples

Remove Profile

Create a model.

model = systemcomposer.createModel("archModel",true);

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Remove the profile from the model.
model.removeProfile("LatencyProfile");

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

profileName — Name of profile
character vector | string

Name of profile, specified as a character vector or string.
Example: "SystemProfile"
Data Types: char | string

4 Functions

4-610

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 removeProfile

4-611

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

4 Functions

4-612

Term Definition Application More Information
property A property is a field in a

stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
applyProfile | createProfile

Topics
“Define Profiles and Stereotypes”

 removeProfile

4-613

removeProperty
Package: systemcomposer.profile

Remove property from stereotype

Syntax
removeProperty(stereotype,propertyName)

Description
removeProperty(stereotype,propertyName) removes a property from the stereotype.

Examples

Remove Property

Add a component stereotype and add a VoltageRating property with value 5. Then remove the
property.

profile = systemcomposer.profile.Profile.createProfile("myProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component")
property = addProperty(stereotype,"VoltageRating",DefaultValue="5");
removeProperty(stereotype,"VoltageRating")

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

propertyName — Name of property
character vector | string

Name of property to be removed, specified as a character vector or string.
Data Types: char | string

4 Functions

4-614

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
addProperty | setProperty | getProperty

 removeProperty

4-615

Topics
“Define Profiles and Stereotypes”

4 Functions

4-616

removeQuery
Package: systemcomposer.view

Remove architecture view query

Syntax
removeQuery(view,keepContents)

Description
removeQuery(view,keepContents) removes the selection query and groupings on the view view
with the option to keep contents (keepContents), which leaves the elements that were selected in
the view. removeQuery allows for manually editing the view element by element. If keepContents
is true, any property-based groupings are kept intact in the diagram but removed from GroupBy.

Examples

Remove Query From View and Keep Contents

Open the keyless entry system example and create a view. Specify the color as light blue, the query as
all components, and group by the review status.

import systemcomposer.query.*

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = model.createView("All Components Grouped by Review Status",...
 Color="lightblue",Select=AnyComponent,...
 GroupBy="AutoProfile.BaseComponent.ReviewStatus");

Open the Architecture Views Gallery to see the new view All Components Grouped by Review
Status.

model.openViews

Remove the query and keep the contents. The view is now manually editable element by element, and
the groupings are preserved.

view.removeQuery(true)

Input Arguments
view — Architecture view
view object

Architecture view, specified as a systemcomposer.view.View object.

 removeQuery

4-617

keepContents — Whether to keep contents in view
true or 1 (default) | false or 0

Whether to keep contents in view, specified as a logical 1 (true) to keep contents specified by the
removed selection query and property-based groupings or 0 (false) to remove all contents from the
view.

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

4 Functions

4-618

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews | runQuery |
modifyQuery | systemcomposer.view.ElementGroup

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

 removeQuery

4-619

removeReference
Package: systemcomposer.interface

Remove reference to dictionary

Syntax
removeReference(dictionary,reference)

Description
removeReference(dictionary,reference) removes a referenced dictionary from a dictionary in
a System Composer model.

Examples

Remove Referenced Dictionary

Add a data interface newInterface to the local interface dictionary of the model. Save the local
interface dictionary to a shared dictionary as an SLDD file.
arch = systemcomposer.createModel("newModel",true);
addInterface(arch.InterfaceDictionary,"newInterface");
saveToDictionary(arch,"TopDictionary")
topDictionary = systemcomposer.openDictionary("TopDictionary.sldd");

Create a new dictionary and add it as a reference to the existing dictionary.
refDictionary = systemcomposer.createDictionary("ReferenceDictionary.sldd");
addReference(topDictionary,"ReferenceDictionary.sldd")

Remove the referenced dictionary. Confirm in the Model Explorer.
removeReference(topDictionary,"ReferenceDictionary.sldd")

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the
dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

reference — Referenced dictionary
character vector | string

Referenced dictionary, specified as a character vector or string of the name of the referenced
dictionary with the .sldd extension.

4 Functions

4-620

Example: "ReferenceDictionary.sldd"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 removeReference

4-621

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021a

4 Functions

4-622

See Also
saveToDictionary | createDictionary | openDictionary | linkDictionary |
unlinkDictionary | addReference

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 removeReference

4-623

removeStereotype
Package: systemcomposer.profile

Remove stereotype from profile

Syntax
removeStereotype(profile,stereotype)

Description
removeStereotype(profile,stereotype) removes a stereotype from the specified profile.

Examples

Remove Component Stereotype

Create a profile, add a component stereotype to the profile, open the Profile Editor, and remove the
stereotype from the profile.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
stereotype = addStereotype(profile,"electricalComponent",AppliesTo="Component");
systemcomposer.profile.editor
profile.removeStereotype("electricalComponent")

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

stereotype — Stereotype to remove
character vector | string | stereotype object

Stereotype to remove, specified as a systemcomposer.profile.Stereotype object or by name as
a character vector or string.
Example: "electricalComponent"
Data Types: char | string

4 Functions

4-624

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
getStereotype | addStereotype | getDefaultStereotype | setDefaultStereotype

 removeStereotype

4-625

Topics
“Create a Profile and Add Stereotypes”

4 Functions

4-626

removeStereotype
Package: systemcomposer.arch

Remove stereotype from model element

Syntax
removeStereotype(element,stereotype)

Description
removeStereotype(element,stereotype) removes a specified stereotype applied to a model
element from the model element.

Examples

Remove Stereotype

Create a model with a component called Component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Apply the stereotype to the component, remove the stereotype from the component, and get the
stereotypes on the component.

comp.applyStereotype("LatencyProfile.LatencyBase");
comp.removeStereotype("LatencyProfile.LatencyBase");
stereotypes = getStereotypes(comp)

stereotypes =

 1×0 empty cell array

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

 removeStereotype

4-627

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

stereotype — Stereotype
character vector | string

Stereotype, specified as a character vector or string in the form "<profile>.<stereotype>". The
profile must already be applied to the model.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-628

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 removeStereotype

4-629

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

4 Functions

4-630

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 removeStereotype

4-631

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

4 Functions

4-632

Term Definition Application More Information
physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
applyStereotype | batchApplyStereotype | getStereotypes | getStereotypeProperties

Topics
“Remove Stereotypes”

 removeStereotype

4-633

renameProfile
Package: systemcomposer.arch

Rename profile in model

Syntax
renameProfile(model,oldProfileName,newProfileName)

Description
renameProfile(model,oldProfileName,newProfileName) renames a profile on a model from
oldProfileName to newProfileName to make it consistent if the name of the profile was changed
in the file explorer.

Note Before you move, copy, or rename a profile to a different directory, you must close the profile in
the Profile Editor or by using the close function. If you rename a profile, follow the example for the
renameProfile function.

Examples

Rename Profile

Create a model.

model = systemcomposer.createModel("archModel",true);

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Save the model and close the model. Close the Profile Editor.
save(model)
close(model)

Save the profile.
save(profile)

Rename the profile in the file explorer to LatencyProfileNew.xml.

Load the model. Run the renameProfile API to update the model to refer to the correct renamed
profile in the current directory.

4 Functions

4-634

model = systemcomposer.loadModel("archModel");
model.renameProfile("LatencyProfile","LatencyProfileNew");

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

oldProfileName — Old profile name
character vector | string

Old profile name, specified as a character vector or string.
Example: "MyProfile"
Data Types: char | string

newProfileName — New profile name
character vector | string

New profile name, specified as a character vector or string.
Example: "MyProfileNew"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

 renameProfile

4-635

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

4 Functions

4-636

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2020b

See Also
close | open | save

Topics
“Define Profiles and Stereotypes”

 renameProfile

4-637

resetParameterToDefault
Package: systemcomposer.arch

Reset parameter on component to default value

Syntax
resetParameterToDefault(element,paramName)

Description
resetParameterToDefault(element,paramName) resets parameter specified by paramName on
the architectural element element to the default value and units, if applicable.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-638

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 resetParameterToDefault

4-639

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-640

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 resetParameterToDefault

4-641

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-642

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 resetParameterToDefault

4-643

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
element — Architectural element
architecture object | component object | variant component object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, or systemcomposer.arch.VariantComponent object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-644

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 resetParameterToDefault

4-645

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-646

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterNames | setParameterValue |
getParameterValue | setUnit

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 resetParameterToDefault

4-647

resetToDefault
Package: systemcomposer.arch

Resets parameter value to default

Syntax
resetToDefault(param)

Description
resetToDefault(param) resets the parameter value on the instance param to its default value.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

paramPressure.Type

4 Functions

4-648

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 resetToDefault

4-649

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-650

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 resetToDefault

4-651

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-652

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 resetToDefault

4-653

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
param — Parameter
parameter object

Parameter, specified as a systemcomposer.arch.Parameter object.

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-654

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 resetToDefault

4-655

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

4 Functions

4-656

Version History
Introduced in R2022b

See Also
addParameter | getParameter | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterNames | setParameterValue |
resetParameterToDefault | getParameterValue | setUnit

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 resetToDefault

4-657

runQuery
Package: systemcomposer.view

Re-run architecture view query on model

Syntax
runQuery(view)

Description
runQuery(view) re-runs the existing query on the view view. This function removes elements that
no longer match the query and adds elements that now match the query.

Examples

Rerun Query on View

Open the keyless entry system example and create a view. Specify the color as light blue, and the
query as all components.

import systemcomposer.query.*

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");
view = createView(model,"All Components",...
 Color="lightblue",Select=AnyComponent);

Open the Architecture Views Gallery to see the new view All Components.

openViews(model)

Add components to the model. Rerun the query.

runQuery(view)

Input Arguments
view — Architecture view
view object

Architecture view, specified as a systemcomposer.view.View object.

4 Functions

4-658

More About
Definitions

Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system. Switch between a
component diagram,
component hierarchy, or
architecture hierarchy. For
software architectures, you
can switch to a class
diagram view.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”

 runQuery

4-659

Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Version History
Introduced in R2021a

See Also
systemcomposer.view.View | createView | getView | deleteView | openViews |
removeQuery | modifyQuery | systemcomposer.view.ElementGroup | getQualifiedName

Topics
“Create Architecture Views Interactively”
“Create Architectural Views Programmatically”

4 Functions

4-660

save
Package: systemcomposer.profile

Save profile as file

Syntax
filePath = save(profile)
filePath = save(profile,dirPath)

Description
filePath = save(profile) saves a profile to disk as a file with a .xml extension to the current
directory.

filePath = save(profile,dirPath) saves a profile to disk as a file with a .xml extension to the
directory path dirPath.

Examples

Save Profile

Create a profile named newProfile and save it in the current directory.

profile = systemcomposer.profile.Profile.createProfile("newProfile");
path = save(profile);

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

dirPath — Path to save
character vector | string

Path to save, specified as a character vector or string. The current directory is the default if no path
is specified.
Example: "C:\Temp\MATLAB"
Data Types: char | string

Output Arguments
filePath — File path
character vector

 save

4-661

File path where profile is saved, returned as a character vector.

More About
Definitions

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

4 Functions

4-662

See Also
createProfile | find | editor | open | load | close | closeAll

Topics
“Define Profiles and Stereotypes”

 save

4-663

save
Package: systemcomposer.allocation

Save allocation set as file

Syntax
save(allocSet,dirPath)

Description
save(allocSet,dirPath) saves the allocation set allocSet to disk as a file with an .mldatx
extension. This function saves the file to the current directory if the optional input dirPath is left
blank.

Examples

Create and Save Allocation Set

Create two new models with a component each.
mSource = systemcomposer.createModel("Source_Model_Allocation",true);
sourceComp = addComponent(get(mSource,"Architecture"),"Source_Component");
mTarget = systemcomposer.createModel("Target_Model_Allocation",true);
targetComp = addComponent(get(mTarget,"Architecture"),"Target_Component");

Create the allocation set MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet("MyNewAllocation",...
 "Source_Model_Allocation","Target_Model_Allocation");

Get the default allocation scenario.
defaultScenario = getScenario(allocSet,"Scenario 1");

Allocate components between models.
allocation = allocate(defaultScenario,sourceComp,targetComp);

Save the allocation set.
save(allocSet)

Open the Allocation Editor.
systemcomposer.allocation.editor

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

4 Functions

4-664

dirPath — Path to save
character vector | string

Path to save, specified as a character vector or string. The current directory is the default if no path
is specified.
Example: 'C:\Temp\MATLAB'
Data Types: char | string

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

See Also
createAllocationSet | createScenario | deleteScenario | getScenario | load | closeAll
| close | find

Topics
“Create and Manage Allocations Programmatically”

 save

4-665

save
Package: systemcomposer.arch

Save architecture model or data dictionary

Syntax
save(model)
save(dictionary)

Description
save(model) saves the architecture model to a file specified in its Name property.

save(dictionary) saves the data dictionary.

Examples

Save Model and Data Dictionary

arch = systemcomposer.createModel("newModel");
save(arch);
save(arch.InterfaceDictionary);
dictionary = systemcomposer.createDictionary("modelInterfaces.sldd");
dictionary.save;

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

dictionary — Data dictionary
dictionary object

Data dictionary attached to the architecture model, specified as a
systemcomposer.interface.Dictionary object.

4 Functions

4-666

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 save

4-667

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

4 Functions

4-668

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 save

4-669

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
loadModel | close | systemcomposer.createModel

Topics
“Create Architecture Model”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-670

save
Package: systemcomposer.analysis

Save architecture instance

Syntax
save(instance,fileName)

Description
save(instance,fileName) saves an architecture instance to a MAT-file. The save method is part
of the systemcomposer.analysis.ArchitectureInstance class.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Save Architecture Instance to MAT-File

Create a profile for latency characteristics and save it.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Instantiate all stereotypes in a profile.

model = systemcomposer.createModel("archModel",true);
instance = instantiate(model.Architecture,"LatencyProfile","NewInstance");

Save the architecture instance.

 save

4-671

instance.save("InstanceFile")

Input Arguments
instance — Architecture instance
architecture instance object

Architecture instance to be saved, specified as a
systemcomposer.analysis.ArchitectureInstance object.

fileName — MAT-file to save instance
character vector | string

MAT-file to save instance, specified as a character vector or string.
Example: "InstanceFile"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

4 Functions

4-672

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
instantiate | systemcomposer.analysis.Instance | loadInstance | deleteInstance |
refresh | update | lookup | iterate

Topics
“Write Analysis Function”

 save

4-673

saveAsModel
Package: systemcomposer.arch

(Not recommended) Save architecture of component to separate model

Note The saveAsModel function is not recommended. Use the createArchitectureModel
function instead. For more information, see “Compatibility Considerations”.

Syntax
saveAsModel(component,modelName)

Description
saveAsModel(component,modelName) saves the architecture of the component to a separate
architecture model and references the model from this component.

Input Arguments
component — Architecture component
component object

Architecture component, specified as a systemcomposer.arch.Component object. The component
must have an architecture with definition type composition. For other definition types, this function
gives an error.

modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

Version History
Introduced in R2019a

R2021b_plus: saveAsModel function is not recommended
Not recommended starting in R2021b_plus

The saveAsModel function is not recommended. Use the createArchitectureModel function
instead.

See Also
linkToModel | isReference | createArchitectureModel | inlineComponent | Reference
Component

4 Functions

4-674

Topics
“Implement Component Behavior Using Simulink”
“Decompose and Reuse Components”

 saveAsModel

4-675

saveToDictionary
Package: systemcomposer.arch

Save interfaces to dictionary

Syntax
saveToDictionary(model,dictionaryName)
saveToDictionary(dictionary,dictionaryName)
saveToDictionary(___ ,Name,Value)

Description
saveToDictionary(model,dictionaryName) saves all locally defined interfaces to a shared
dictionary, and links the model to the shared dictionary with a .sldd extension.

saveToDictionary(dictionary,dictionaryName) saves all locally defined interfaces to a
shared dictionary with an SLDD extension.

saveToDictionary(___ ,Name,Value) saves all locally defined interfaces to a shared dictionary
with additional options.

Examples

Save to Dictionary

Create a model and a shared dictionary. Add an interface to the model's interface dictionary, and add
an element. Save all interfaces defined in the model to the shared dictionary.

arch = systemcomposer.createModel("newModel",true);
dictionary = systemcomposer.createDictionary("myInterfaces.sldd");
interface = addInterface(arch.InterfaceDictionary,"newSignal");
element = addElement(interface,"newElement",Type="double");
saveToDictionary(arch,"myInterfaces")

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. You can specify
the default data dictionary that defines local interfaces or an external data dictionary that carries
interface definitions. If the model links to multiple data dictionaries, then dictionary must be the

4 Functions

4-676

dictionary that carries interface definitions. For information on how to create a dictionary, see
createDictionary.

dictionaryName — Dictionary name
character vector | string

Dictionary name, specified as a character vector or string. If a dictionary with this name does not
exist, one will be created.
Example: "myInterfaces"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
saveToDictionary(arch,"MyInterfaces",CollisionResolutionOption=systemcomposer
.interface.CollisionResolution.USE_MODEL)

CollisionResolutionOption — Option to resolve interface collisions using model or
dictionary
systemcomposer.interface.CollisionResolution.USE_MODEL (default) |
systemcomposer.interface.CollisionResolution.USE_DICTIONARY

Option to resolve collisions using model or dictionary, specified as one of the following:

• systemcomposer.interface.CollisionResolution.USE_MODEL to prioritize interface
duplicates using the local interfaces defined in the model.

• systemcomposer.interface.CollisionResolution.USE_DICTIONARY to prioritize
interface duplicates using the interfaces defined in the saved dictionary.

Example:
saveToDictionary(arch,"MyInterfaces",CollisionResolutionOption=systemcomposer
.interface.CollisionResolution.USE_DICTIONARY)

Data Types: enum

 saveToDictionary

4-677

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-678

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

 saveToDictionary

4-679

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-680

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019b

See Also
createDictionary | linkDictionary | unlinkDictionary | openDictionary |
addReference | removeReference

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 saveToDictionary

4-681

setActiveChoice
Package: systemcomposer.arch

Set active choice on variant component

Syntax
setActiveChoice(variantComponent,choice)

Description
setActiveChoice(variantComponent,choice) sets the active choice on the variant component.

Examples

Set Active Variant Choice

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, and set the active choice.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);
setActiveChoice(variant,compList(2));

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

choice — Active choice in a variant component
component object | character vector | string

Active choice in a variant component, specified as a systemcomposer.arch.Component object or
label of the variant choice as a character vector or string.
Example: "Choice2"
Data Types: char | string

4 Functions

4-682

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
addChoice | getActiveChoice | getChoices | addVariantComponent | Variant Component

Topics
“Create Variants”

 setActiveChoice

4-683

setAsynchronous
Package: systemcomposer.interface

Set function element as asynchronous

Syntax
setAsynchronous(functionElem,isAsync)

Description
setAsynchronous(functionElem,isAsync) sets the function element functionElem as
asynchronous if isAsync is true.

Examples

Set Function Element as Asynchronous

Create a new model.

model = systemcomposer.createModel("archModel","SoftwareArchitecture",true);

Create a service interface.

interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface");

Create a function element.

element = addElement(interface,"newFunctionElement");

Set function element as asynchronous.

setAsynchronous(element,true)

Input Arguments
functionElem — Function element
function element object

Function element, specified as a systemcomposer.interface.FunctionElement object.

isAsync — Whether function element is asynchronous
false or 0 (default) | true or 1

Whether function element is asynchronous, specified as a logical.
Data Types: logical

4 Functions

4-684

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

 setAsynchronous

4-685

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

4 Functions

4-686

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 setAsynchronous

4-687

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022b

See Also
addElement | createDictionary | addServiceInterface | getInterface |
getInterfaceNames | removeInterface | linkDictionary | Adapter | addValueType |
setFunctionPrototype | getFunctionArgument

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

4 Functions

4-688

setComplexity
Package: systemcomposer

Set complexity for value type

Syntax
setComplexity(valueType,complexity)

Description
setComplexity(valueType,complexity) sets the complexity for the designated value type.

Examples

Set Complexity for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the complexity for the value type as complex.
airSpeedType.setComplexity("complex")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

complexity — Complexity
"real" (default) | "complex" | "auto"

Complexity, specified as "real", "complex", or "auto".
Data Types: char | string

 setComplexity

4-689

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

4 Functions

4-690

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addElement | addInterface | addValueType | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 setComplexity

4-691

setCondition
Package: systemcomposer.arch

Set condition on variant choice

Syntax
setCondition(variantComponent,choice,expression)

Description
setCondition(variantComponent,choice,expression) sets the variant control condition
specified by expression for the choice choice on the variant component variantComponent to
choose the active variant choice. If the condition is met on a variant choice, that variant choice
becomes the active choice on the variant component.

Examples

Set Variant Control Condition

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, and set a condition on one variant choice to choose the active variant choice.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
mode = 1;
variant = addVariantComponent(arch,"Component1");
compList = addChoice(variant,["Choice1","Choice2"]);
setCondition(variant,compList(2),"mode == 2");

Input Arguments
variantComponent — Variant component
variant component object

Variant component, specified as a systemcomposer.arch.VariantComponent object.

choice — Choice in variant component
component object

Choice in variant component, specified as a systemcomposer.arch.Component object.

expression — Control string
character vector | string

Control string that controls the selection of choice, specified as a character vector or string.
Data Types: char | string

4 Functions

4-692

More About
Definitions

Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition” on page 4-692

Version History
Introduced in R2019a

See Also
makeVariant | getCondition | addVariantComponent | addChoice | getActiveChoice |
setActiveChoice | Variant Component

Topics
“Create Variants”

 setCondition

4-693

setDataType
Package: systemcomposer

Set data type for value type

Syntax
setDataType(valueType,type)

Description
setDataType(valueType,type) sets the data type for the designated value type.

Examples

Set Data Type for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the data type for the value type as single.
airSpeedType.setDataType("single")

Input Arguments
valueType — Value type
value type object

Value type, specified as a systemcomposer.ValueType object.

type — Data type
character vector | string

Data type, specified as a character vector or string for a valid MATLAB data type.
Data Types: char | string

4 Functions

4-694

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 setDataType

4-695

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-696

setDefaultComponentStereotype
Package: systemcomposer.profile

(Removed) Set default stereotype for components

Note The setDefaultComponentStereotype function has been removed. You can set a default
component stereotype using the function setDefaultElementStereotype. For further details, see
“Compatibility Considerations”.

Syntax
setDefaultComponentStereotype(stereotype,stereotypeName)

Description
setDefaultComponentStereotype(stereotype,stereotypeName) specifies the default
stereotype stereotypeName of the child components whose parent component has stereotype
applied.

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Default stereotype name
character vector | string

Default stereotype name for child components, specified as a character vector or string in the form
'<profile>.<stereotype>'.
Data Types: char | string

Version History
Introduced in R2019a

R2021b: setDefaultComponentStereotype function has been removed
Errors starting in R2021b

The setDefaultComponentStereotype function has been removed in R2021b. Use
setDefaultElementStereotype instead.

See Also
applyStereotype | removeStereotype | setDefaultElementStereotype

 setDefaultComponentStereotype

4-697

Topics
“Define Profiles and Stereotypes”

4 Functions

4-698

setDefaultConnectorStereotype
Package: systemcomposer.profile

(Removed) Set default stereotype for connectors

Note The setDefaultConnectorStereotype function has been removed. You can set a default
connector stereotype using the function setDefaultElementStereotype. For further details, see
“Compatibility Considerations”.

Syntax
setDefaultConnectorStereotype(stereotype,stereotypeName)

Description
setDefaultConnectorStereotype(stereotype,stereotypeName) specifies the default
stereotype stereotypeName of the connectors within a parent component that has stereotype
applied.

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Default stereotype name
character vector | string

Default stereotype name for connectors, specified as a character vector or string in the form
'<profile>.<stereotype>'.
Data Types: char | string

Version History
Introduced in R2019a

R2021b: setDefaultConnectorStereotype function has been removed
Errors starting in R2021b

The setDefaultConnectorStereotype function has been removed in R2021b. Use
setDefaultElementStereotype instead.

See Also
applyStereotype | removeStereotype | setDefaultElementStereotype

 setDefaultConnectorStereotype

4-699

Topics
“Define Profiles and Stereotypes”

4 Functions

4-700

setDefaultElementStereotype
Package: systemcomposer.profile

Set default stereotype for elements

Syntax
setDefaultElementStereotype(stereotype,elementType,stereotypeName)

Description
setDefaultElementStereotype(stereotype,elementType,stereotypeName) specifies the
default stereotype stereotypeName of the child elements whose parent element of type
elementType has the stereotype stereotype applied.

Examples

Set Default Component Stereotype

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Specify the LatencyProfile.NodeLatency stereotype as a component stereotype. Set the default
component stereotype.
nodeLatency.AppliesTo = "Component";
nodeLatency.setDefaultElementStereotype("Component","LatencyProfile.NodeLatency")

Create a model, apply the profile to the model, and add a parent component. Apply the parent
component stereotype on the parent component. Then, open the Profile Editor.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
arch.applyProfile("LatencyProfile");
newComponent = addComponent(arch.Architecture,"Component");

 setDefaultElementStereotype

4-701

newComponent.applyStereotype("LatencyProfile.NodeLatency");
systemcomposer.profile.editor(profile)

Create a child component and get the stereotypes on the child component.
childComponent = addComponent(newComponent.Architecture,"Child");
stereotypes = getStereotypes(childComponent)

stereotypes =

 1×1 cell array

 {'LatencyProfile.NodeLatency'}

Set Default Port Stereotype

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Specify the LatencyProfile.NodeLatency stereotype as a component stereotype. Set the default
port stereotype.
nodeLatency.AppliesTo = "Component";
nodeLatency.setDefaultElementStereotype("Port","LatencyProfile.PortLatency");

Create a model, apply the profile to the model, and add a parent component. Apply the parent
component stereotype on the parent component. Then, open the Profile Editor.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
arch.applyProfile("LatencyProfile");
newComponent = addComponent(arch.Architecture,"Component");
newComponent.applyStereotype("LatencyProfile.NodeLatency");
systemcomposer.profile.editor(profile)

Create an architecture port on the component and get the stereotypes on the port.
port = addPort(newComponent.Architecture,"testSig","out");
stereotypes = getStereotypes(port)

stereotypes =

 1×1 cell array

4 Functions

4-702

 {'LatencyProfile.PortLatency'}

Set Default Connector Stereotype

Create a profile for latency characteristics and save it.

profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Specify the LatencyProfile.NodeLatency stereotype as a component stereotype. Set the default
connector stereotype.

nodeLatency.AppliesTo = "Component";
nodeLatency.setDefaultElementStereotype("Connector","LatencyProfile.ConnectorLatency");

Create a model, apply the profile to the model, and add a parent component. Apply the parent
component stereotype on the parent component. Then, open the Profile Editor.

modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
arch.applyProfile("LatencyProfile");
newComponent = addComponent(arch.Architecture,"Component");
newComponent.applyStereotype("LatencyProfile.NodeLatency");
systemcomposer.profile.editor(profile)

Create two child components. Add ports. Then, create a connection between the ports and get
stereotypes on the connector.

childComponent1 = addComponent(newComponent.Architecture,"Child1");
childComponent2 = addComponent(newComponent.Architecture,"Child2");

outPort1 = addPort(childComponent1.Architecture,"testSig","out");
inPort1 = addPort(childComponent2.Architecture,"testSig","in");
srcPort = getPort(childComponent1,"testSig");
destPort = getPort(childComponent2,"testSig");

connector = connect(srcPort,destPort);
stereotypes = getStereotypes(connector)

stereotypes =

 1×1 cell array

 setDefaultElementStereotype

4-703

 {'LatencyProfile.ConnectorLatency'}

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

elementType — Element type
"Component" | "Port" | "Connector" | "Interface" | "Function"

Element type, specified as "Component", "Port", "Connector", "Interface", or "Function".
The element type "Function" is only available for software architectures.
Data Types: char | string

stereotypeName — Default stereotype name
character vector | string

Default stereotype name for child elements, specified as a character vector or string in the form
"<profile>.<stereotype>".
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

4 Functions

4-704

Term Definition Application More Information
model A System Composer model

is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 setDefaultElementStereotype

4-705

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2021b

See Also
applyStereotype | getDefaultElementStereotype | removeStereotype

Topics
“Define Profiles and Stereotypes”

4 Functions

4-706

setDefaultPortStereotype
Package: systemcomposer.profile

(Removed) Set default stereotype for ports

Note The setDefaultPortStereotype function has been removed. You can set a default port
stereotype using the function setDefaultElementStereotype. For further details, see
“Compatibility Considerations”.

Syntax
setDefaultPortStereotype(stereotype,stereotypeName)

Description
setDefaultPortStereotype(stereotype,stereotypeName) specifies the default stereotype
stereotypeName of the ports on the architecture of a parent component that has stereotype
applied.

Input Arguments
stereotype — Stereotype
stereotype object

Stereotype, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Default stereotype name
character vector | string

Default stereotype name for ports, specified as a character vector or string in the form
'<profile>.<stereotype>'.
Data Types: char | string

Version History
Introduced in R2019a

R2021b: setDefaultPortStereotype function has been removed
Errors starting in R2021b

The setDefaultPortStereotype function has been removed in R2021b. Use
setDefaultElementStereotype instead.

See Also
applyStereotype | removeStereotype | setDefaultElementStereotype

 setDefaultPortStereotype

4-707

Topics
“Define Profiles and Stereotypes”

4 Functions

4-708

setDefaultStereotype
Package: systemcomposer.profile

Set default stereotype for profile

Syntax
setDefaultStereotype(profile,name)

Description
setDefaultStereotype(profile,name) sets the default stereotype with name name for a profile
profile. The stereotype must apply to components.

Examples

Set Default Stereotype

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Set the default stereotype.
profile.setDefaultStereotype("NodeLatency")

Create a model and apply the profile to the model. Open the Profile Editor.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);
arch.applyProfile(LatencyProfile);
systemcomposer.profile.editor

Get stereotypes on the root architecture.
stereotypes = getStereotypes(arch.Architecture)

stereotypes =

 setDefaultStereotype

4-709

 1×1 cell array

 {'LatencyProfile.NodeLatency'}

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

name — Stereotype name
character vector | string

Stereotype name, specified as a character vector or string. The name of the stereotype must be
unique within the profile.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-710

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 setDefaultStereotype

4-711

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
createProfile | getDefaultStereotype | addStereotype | getStereotype |
removeStereotype

4 Functions

4-712

Topics
“Create a Profile and Add Stereotypes”

 setDefaultStereotype

4-713

setDescription
Package: systemcomposer

Set description for value type or interface

Syntax
setDescription(valueType,description)
setDescription(interface,description)

Description
setDescription(valueType,description) sets the description for the designated value type.

setDescription(interface,description) sets the description for the designated interface.

Examples

Set Description for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the description for the value type as Maintain altitude.
airSpeedType.setDescription("Maintain altitude")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

interface — Interface
data interface object | physical interface object | service interface object

Interface, specified as a systemcomposer.interface.DataInterface,
systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

description — Description
character vector | string

4 Functions

4-714

Description, specified as a character vector or string.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 setDescription

4-715

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

4 Functions

4-716

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 setDescription

4-717

setDimensions
Package: systemcomposer

Set dimensions for value type

Syntax
setDimensions(valueType,dimensions)

Description
setDimensions(valueType,dimensions) sets the dimensions for the designated value type.

Examples

Set Dimensions for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the dimensions for the value type as 2.
airSpeedType.setDimensions("2")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

dimensions — Dimensions
character vector | string

Dimensions, specified as a character vector or string.
Data Types: char | string

4 Functions

4-718

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 setDimensions

4-719

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-720

setFunctionPrototype
Package: systemcomposer.interface

Set prototype for function element

Syntax
setFunctionPrototype(functionElem,prototype)

Description
setFunctionPrototype(functionElem,prototype) sets the prototype prototype for a
function represented by the function element object functionElem. Use prototypes to add, remove,
and rename the arguments of a function element.

Examples

Set Function Prototype

Create a new model.
model = systemcomposer.createModel("archModel","SoftwareArchitecture",true)

Create a service interface.
interface = addServiceInterface(model.InterfaceDictionary,"newServiceInterface")

Create a function element.

element = addElement(interface,"f0")

Set the function prototype.

setFunctionPrototype(element,"y=f0(u)")

Input Arguments
functionElem — Function element
function element object

Function element, specified as a systemcomposer.interface.FunctionElement object.

prototype — Prototype
character vector | string

Prototype, specified as a character vector or string in the form [y1,y2]=f0(u1,u2) where y1 and
y2 are output arguments, u1 and u2 are input arguments, and f0 is the name of the functionElem
object.
Example: "y=f0(u1,u2)"

 setFunctionPrototype

4-721

Data Types: char | string

More About
Definitions

Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

4 Functions

4-722

Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

 setFunctionPrototype

4-723

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-724

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2022a

See Also
addElement | createDictionary | addServiceInterface | getInterface |
getInterfaceNames | removeInterface | linkDictionary | Adapter | addValueType |
getFunctionArgument | setAsynchronous

Topics
“Author Service Interfaces for Client-Server Communication”
“Client-Server Interfaces in Class Diagram View”
“Define Port Interfaces Between Components”

 setFunctionPrototype

4-725

setInterface
Package: systemcomposer.arch

Set interface for port

Syntax
setInterface(port,interface)

Description
setInterface(port,interface) sets the interface for a port.

Examples

Set Interface for Port and Remove Interface on Port

Create a model and get the root architecture.
model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");

Add a component and add a port to the component.
newComponent = addComponent(rootArch,"newComponent");
newPort = addPort(newComponent.Architecture,"newPort","in");

Add a data interface and set the interface for the port.
newInterface = addInterface(model.InterfaceDictionary,"newInterface");
setInterface(newPort,newInterface)

Remove the data interface on the port.
newPort.setInterface("")

Input Arguments
port — Port
port object

Port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

interface — Interface
data interface object | value type object | physical interface object | service interface object | empty
string | empty character vector

Interface to set, specified as a systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object. Passing in an empty string or character
vector removes the interface on the port.

4 Functions

4-726

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 setInterface

4-727

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

4 Functions

4-728

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 setInterface

4-729

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
createModel | addValueType | addElement | addInterface | addPhysicalInterface |
addServiceInterface

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-730

setMaximum
Package: systemcomposer

Set maximum for value type

Syntax
setMaximum(valueType,maximum)

Description
setMaximum(valueType,maximum) sets the maximum for the designated value type.

Examples

Set Maximum for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the maximum for the value type as 100.
airSpeedType.setMaximum("100")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

maximum — Maximum
character vector | string

Maximum, specified as a character vector or string.
Data Types: char | string

 setMaximum

4-731

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

4 Functions

4-732

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 setMaximum

4-733

setMinimum
Package: systemcomposer

Set minimum for value type

Syntax
setMinimum(valueType,minimum)

Description
setMinimum(valueType,minimum) sets the minimum for the designated value type.

Examples

Set Minimum for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the minimum for the value type as 0.
airSpeedType.setMinimum("0")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

minimum — Minimum
character vector | string

Minimum, specified as a character vector or string.
Data Types: char | string

4 Functions

4-734

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 setMinimum

4-735

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-736

setName
Package: systemcomposer.arch

Set name for port

Syntax
setName(port,name)

Description
setName(port,name) sets the name for the designated port.

Examples

Set New Name for Port

Create a model, get the root architecture, add a component, add a port, and set a new name for the
port.

model = systemcomposer.createModel("archModel",true);
rootArch = get(model,"Architecture");
newComponent = addComponent(rootArch,"newComponent");
newPort = addPort(newComponent.Architecture,"newCompPort","in");
setName(newPort,"compPort")

Input Arguments
port — Port
port object

Port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

name — Name of port
character vector | string

Name of port, specified as a character vector or string.
Data Types: char | string

 setName

4-737

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-738

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Version History
Introduced in R2019a

See Also
Component | systemcomposer.arch.ArchitecturePort |
systemcomposer.arch.ComponentPort

 setName

4-739

setName
Package: systemcomposer.interface

Set name for value type, function argument, interface, or element

Syntax
setName(interfaceElem,name)

Description
setName(interfaceElem,name) sets the name for the designated value type, interface, element,
or function argument.

Examples

Set Name for Data Element

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a data interface, then create an data element x.
interface = arch.InterfaceDictionary.addInterface("interface");
elem = interface.addElement("x");

Set a new name for the data element as newName.
setName(elem,"newName");

Input Arguments
interfaceElem — Value type, function argument, interface, or element
data interface object | data element object | physical interface object | physical element object | value
type object | service interface object | function element object | function argument object

Value type, function argument, interface, or element to be named, specified as a
systemcomposer.interface.DataInterface, systemcomposer.interface.DataElement,
systemcomposer.interface.PhysicalInterface,
systemcomposer.interface.PhysicalElement, systemcomposer.ValueType,
systemcomposer.interface.ServiceInterface,
systemcomposer.interface.FunctionElement, or
systemcomposer.interface.FunctionArgument object.

name — Name
character vector | string

Name of value type, function argument, interface, or element, specified as a character vector or
string. This name must be a valid MATLAB identifier.

4 Functions

4-740

Example: "newName"
Data Types: char | string

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

 setName

4-741

Term Definition Application More Information
value type A value type can be used as

a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

4 Functions

4-742

See Also
createModel | addElement | addInterface | addPhysicalInterface | addValueType |
addServiceInterface

Topics
“Specify Physical Interfaces on Ports”
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 setName

4-743

setParameterValue
Package: systemcomposer.arch

Set value of parameter

Syntax
setParameterValue(element,paramName,value,unit)

Description
setParameterValue(element,paramName,value,unit) sets the parameter value specified by
value and, optionally, the parameter units unit for a specified parameter name, paramName, on an
architectural element, element.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

4 Functions

4-744

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

 setParameterValue

4-745

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

4 Functions

4-746

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

 setParameterValue

4-747

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

4 Functions

4-748

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

 setParameterValue

4-749

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
element — Architectural element
architecture object | component object | variant component object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, or systemcomposer.arch.VariantComponent object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

value — Parameter value
character vector | string

Parameter value, specified as a character vector or string.
Data Types: char | string

unit — Units of parameter
character vector | string

Units of parameter, specified as a character vector or string. You can change the units of a parameter
only if the value type specifies a unit.
Data Types: char | string

4 Functions

4-750

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 setParameterValue

4-751

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

4 Functions

4-752

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterNames | getParameterValue | setUnit |
resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

 setParameterValue

4-753

setProperty
Package: systemcomposer.arch

Set property value corresponding to stereotype applied to element

Syntax
setProperty(element,propertyName,propertyValue,propertyUnits)

Description
setProperty(element,propertyName,propertyValue,propertyUnits) sets the value and
units of the property specified in the propertyName argument. Set the property corresponding to an
applied stereotype by qualified name "<profile>.<stereotype>.<property>".

Examples

Apply a Stereotype and Set Numeric Property Value

In this example, weight is a property of the stereotype sysComponent.

Create a model with a component called "Component".

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to
the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");
latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");
systemcomposer.profile.editor(profile)
model.applyProfile("LatencyProfile");

Apply the stereotype to the component, and set a new latency property.

applyStereotype(comp,"LatencyProfile.LatencyBase")
setProperty(comp,"LatencyProfile.LatencyBase.latency","500")

Apply a Stereotype and Set String Property Value

In this example, description is a property of the stereotype sysComponent.

Create a model with a component called Component.

model = systemcomposer.createModel("archModel",true);
arch = get(model,"Architecture");
comp = addComponent(arch,"Component");

4 Functions

4-754

Create a profile with a stereotype, then apply the profile to the model. Open the Profile Editor.
profile = systemcomposer.profile.Profile.createProfile("sysProfile");
base = profile.addStereotype("sysComponent");
base.addProperty("description",Type="string");
model.applyProfile("sysProfile");
systemcomposer.profile.editor

Apply the stereotype to the component, and set a new description property.

applyStereotype(comp,"sysProfile.sysComponent")
expression = sprintf("'%s'","component description")
setProperty(comp,"sysProfile.sysComponent.description",expression)

Set Property Value on Existing Component

Set the AutoProfile.System.Cost property on the FOB Locator System component.

Launch the keyless entry system project.

scKeylessEntrySystem

Load the model and find the FOB Locator System component.
model = systemcomposer.loadModel("KeylessEntryArchitecture");
comp = lookup(model,Path="KeylessEntryArchitecture/FOB Locator System");

Set the Cost property on the component.

setProperty(comp,"AutoProfile.System.Cost","200","USD")

Input Arguments
element — Architectural element
architecture object | component object | port object | connector object | physical connector object |
function object | data interface object | value type object | physical interface object | service interface
object

Architectural element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.VariantComponent,
systemcomposer.arch.ComponentPort, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.Connector, systemcomposer.arch.PhysicalConnector,
systemcomposer.arch.Function, systemcomposer.interface.DataInterface,
systemcomposer.ValueType, systemcomposer.interface.PhysicalInterface, or
systemcomposer.interface.ServiceInterface object.

propertyName — Name of property
character vector | string

Name of property, specified as a character vector or string in the form
'<profile>.<stereotype>.<property>'.
Data Types: char | string

propertyValue — Value of property
character vector | string

 setProperty

4-755

Value of property, specified as a character vector or string. Specify string values in the form
sprintf("'%s'",'<contents of string>'). For more information, see “Apply a Stereotype and
Set String Property Value” on page 4-754.
Data Types: char | string

propertyUnits — Units of property
character vector | string

Units of property to interpret property values, specified as a character vector or string.
Data Types: char | string

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

4 Functions

4-756

Term Definition Application More Information
component A component is a nontrivial,

nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

port A port is a node on a
component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

 setProperty

4-757

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

4 Functions

4-758

Term Definition Application More Information
physical port A physical port represents a

Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Version History
Introduced in R2019a

See Also
getProperty | addProperty | removeProperty

Topics
“Set Properties for Analysis”

 setProperty

4-759

setType
Package: systemcomposer.interface

Set shared type on data element or function argument

Syntax
setType(dataElement,type)

Description
setType(dataElement,type) sets a type on a data element or a function argument.

Examples

Set Value Type on Data Element

model = systemcomposer.createModel("archModel",true);
dictionary = model.InterfaceDictionary;
airspeedType = dictionary.addValueType("AirSpeed");
port = model.Architecture.addPort("inPort","in");
interface = port.createInterface("DataInterface");
element = interface.addElement("newElement");
element.setType(airspeedType)

Open the Interface Editor from the Modeling > Design menu. Observe the new value type
AirSpeed under the model archModel.slx interface dictionary. Switch from Dictionary View to
Port Interface View on the right. Observe the owned data element on the port interface inPort
called newElement with Type defined as AirSpeed.

Input Arguments
dataElement — Data element or function argument
data element object | function argument object

Data element, specified as a systemcomposer.interface.DataElement or
systemcomposer.interface.FunctionArgument object.

type — Type
data interface object | value type object

Type, specified as a systemcomposer.interface.DataInterface, for data elements only, or
systemcomposer.ValueType object.

4 Functions

4-760

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

 setType

4-761

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
addValueType | createModel | addInterface | createOwnedType | createInterface |
removeInterface

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

4 Functions

4-762

setUnit
Package: systemcomposer.arch

Set units on parameter value

Syntax
setUnit(arch,paramName,unit)

Description
setUnit(arch,paramName,unit) sets the units specified by unit for the parameter specified by
paramName for the architectural element arch. You cannot set units for a parameter promoted from
a component.

Examples

Modify Parameters for Axle Architecture

This example shows a wheel axle architecture model with instance-specific parameters exposed in
System Composer™. These parameters are defined as model arguments on the Simulink® reference
model used as a model behavior linked to two System Composer components. You can change the
values of these parameters independently on each reference component.

To add parameters to the architecture model or components, use the Parameter Editor. To remove
these parameters, delete them from the Parameter Editor.

Open the architecture model of the wheel axle mAxleArch to interact with the parameters on the
reference components using the Property Inspector.

model = systemcomposer.openModel("mAxleArch");

Look up the Component objects for the RightWheel and LeftWheel components.

rightWheelComp = lookup(model,Path="mAxleArch/RightWheel");
leftWheelComp = lookup(model,Path="mAxleArch/LeftWheel");

Get the parameter names for the RightWheel component. Since the LeftWheel component is linked
to the same reference model mWheel, the parameters are the same on the LeftWheel component.

paramNames = rightWheelComp.getParameterNames

paramNames = 1x3 string
 "Diameter" "Pressure" "Wear"

Get the Pressure parameter on the RightWheel component architecture.

paramPressure = rightWheelComp.Architecture.getParameter(paramNames(2));

Display the value type for the Pressure parameter.

 setUnit

4-763

paramPressure.Type

ans =
 ValueType with properties:

 Name: 'Pressure'
 DataType: 'double'
 Dimensions: '[1 1]'
 Units: 'psi'
 Complexity: 'real'
 Minimum: ''
 Maximum: ''
 Description: ''
 Owner: [1x1 systemcomposer.arch.Architecture]
 Model: [1x1 systemcomposer.arch.Model]
 UUID: '47c2446a-f6b0-4710-9a73-7ed25d1671c4'
 ExternalUID: ''

Get the RightWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = rightWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'31'

paramUnits =
'psi'

isDefault = logical
 0

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

4 Functions

4-764

isDefault = logical
 1

Get the LeftWheel component parameter values.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue =
'16'

paramUnits =
'in'

isDefault = logical
 1

paramName =
"Pressure"

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

paramName =
"Wear"

paramValue =
'0.25'

paramUnits =
'in'

isDefault = logical
 1

First, check the evaluated RightWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = rightWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

 setUnit

4-765

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 31

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Check the evaluated LeftWheel parameters.

for i = 1:length(paramNames)
 paramName = paramNames(i)
 [paramValue,paramUnits] = leftWheelComp.getEvaluatedParameterValue(paramNames(i))
end

paramName =
"Diameter"

paramValue = 16

paramUnits =
'in'

paramName =
"Pressure"

paramValue = 32

paramUnits =
'psi'

paramName =
"Wear"

paramValue = 0.2500

paramUnits =
'in'

Set the parameter value and unit for the PSI parameter on the LeftWheel component.

First, check the current values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

4 Functions

4-766

isDefault = logical
 1

Update the values for the pressure on LeftWheel.

leftWheelComp.setParameterValue("Pressure","34")
[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'34'

paramUnits =
'psi'

isDefault = logical
 0

Revert the Pressure parameter on LeftWheel to its default value.

leftWheelComp.resetParameterToDefault("Pressure")

Check the reverted values for the pressure on LeftWheel.

[paramValue,paramUnits,isDefault] = leftWheelComp.getParameterValue("Pressure")

paramValue =
'32'

paramUnits =
'psi'

isDefault = logical
 1

Promote the Pressure parameter on the LeftWheel component.

addParameter(model.Architecture,Path="mAxleArch/LeftWheel",Parameters="Pressure");

Get the promoted Pressure parameter from the root architecture of the mAxleArch model.

pressureParam = model.Architecture.getParameter("LeftWheel.Pressure");

Adjust the value of the promoted Pressure parameter.

pressureParam.Value = "30";
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

 setUnit

4-767

Get the source parameter from which the Pressure parameter is promoted.

sourceParam = getParameterPromotedFrom(pressureParam)

sourceParam =
 Parameter with properties:

 Name: 'Pressure'
 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Component]
 Unit: 'psi'

Reset the value of the promoted Pressure parameter to the default value in the source parameter.

resetToDefault(pressureParam);
pressureParam

pressureParam =
 Parameter with properties:

 Name: "LeftWheel.Pressure"
 Value: '32'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'psi'

Delete the promoted parameter.

destroy(pressureParam)

Add a new Muffler component to the mAxleArch architecture model.

topModel = systemcomposer.loadModel("mAxleArch");
mufflerComp = addComponent(topModel.Architecture,"Muffler");

Add the parameter noiseReduction to the Muffler component.

noiseReduce = addParameter(mufflerComp.Architecture,"noiseReduction");

Set the default Unit value for the NoiseReduction parameter.

valueTypeNoise = noiseReduce.Type;
valueTypeNoise.Units = "dB";

Set the Value property for the noiseReduction parameter.

noiseReduce.Value = "30";

View the properties of the noiseReduction parameter.

noiseReduce

noiseReduce =
 Parameter with properties:

 Name: "noiseReduction"

4 Functions

4-768

 Value: '30'
 Type: [1x1 systemcomposer.ValueType]
 Parent: [1x1 systemcomposer.arch.Architecture]
 Unit: 'dB'

Rearrange the mAxleArch architecture model to view all components.

Simulink.BlockDiagram.arrangeSystem("mAxleArch");

Delete the Muffler component.

destroy(mufflerComp)

Save the updated models.

model = systemcomposer.loadModel("mWheelArch");
save(model)
save(topModel)

Input Arguments
arch — Architecture
architecture object

Architecture, specified as a systemcomposer.arch.Architecture object.

paramName — Parameter name
character vector | string

Parameter name, specified as a character vector or string.
Example: "GainArg"
Data Types: char | string

unit — Units of parameter
character vector | string

Units of parameter, specified as a character vector or string. You can change the units of a parameter
only if the value type specifies a unit.
Data Types: char | string

 setUnit

4-769

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-770

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models or
subsystems.

• “Implement Component
Behavior Using
Simulink”

• “Create Architecture
Reference”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

 setUnit

4-771

Term Definition Application More Information
subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation”

• “Implement Component
Behavior Using
Stateflow Charts”

Version History
Introduced in R2022a

See Also
addParameter | getParameter | resetToDefault | getParameterPromotedFrom |
getEvaluatedParameterValue | getParameterNames | getParameterValue |
setParameterValue | resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Access Model Arguments as Parameters on Reference Components”
“Use Parameters to Store Instance Values with Components”

4 Functions

4-772

setUnits
Package: systemcomposer

Set units for value type

Syntax
setUnits(valueType,units)

Description
setUnits(valueType,units) sets the units for the designated value type.

Examples

Set Units for Value Type

Create a model archModel.
modelName = "archModel";
arch = systemcomposer.createModel(modelName,true);

Add a value type airSpeed to the interface dictionary of the model.
airSpeedType = arch.InterfaceDictionary.addValueType("airSpeed");

Set the units for the value type as m/s.
airSpeedType.setUnits("m/s")

Input Arguments
valueType — Value type, data element, or function argument
value type object | data element object | function argument object

Value type, data element, or function argument, specified as a systemcomposer.ValueType,
systemcomposer.interface.DataElement, or
systemcomposer.interface.FunctionArgument object.

units — Units
character vector | string

Units, specified as a character vector or string.
Data Types: char | string

 setUnits

4-773

More About
Definitions

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

4 Functions

4-774

Term Definition Application More Information
owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

adapter An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2021b

See Also
createModel | addValueType | addElement | addInterface | createInterface |
createOwnedType

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 setUnits

4-775

setValue
Package: systemcomposer.analysis

Set value of property for element instance

Syntax
setValue(instance,property,value)

Description
setValue(instance,property,value) sets the property property of the instance instance to
the value specified by value.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Set Mass Property Value

Load the small unmanned aerial vehicle (UAV) model, create an architecture instance, and set the
mass property value of a nested component. Get the new value to confirm the change.

scExampleSmallUAV
model = systemcomposer.loadModel("scExampleSmallUAVModel");
instance = instantiate(model.Architecture,"UAVComponent","NewInstance");
setValue(instance.Components(1).Components(1),...
"UAVComponent.OnboardElement.Mass",2);
[massValue,unit] = getValue(instance.Components(1).Components(1),...
"UAVComponent.OnboardElement.Mass")

massValue = 2

unit =
'kg'

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object.

4 Functions

4-776

property — Property
character vector | string

Property, specified in the form "<profile>.<stereotype>.<property>".
Data Types: char | string

value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, specified as a data type that depends on how the property is defined in the profile.

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

 setValue

4-777

Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties”
• “Add Properties with

Stereotypes”
• “Set Properties for

Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Version History
Introduced in R2019a

See Also
getValue | hasValue | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

4 Functions

4-778

“Modeling System Architecture of Small UAV”

 setValue

4-779

synchronizeChanges
Package: systemcomposer.allocation

Synchronize changes of models in allocation set

Syntax
synchronizeChanges(allocSet)

Description
synchronizeChanges(allocSet) synchronizes any changes that have been made in the source or
target models of the allocation set.

Examples

Synchronize Changes from Models in Allocation Set

This example shows how to synchronize changes for models used in an allocation set.

Create two new models with a component each.

mSource = systemcomposer.createModel('Source_Model_Allocation',true);
sourceComp = mSource.Architecture.addComponent('Source_Component');
mTarget = systemcomposer.createModel('Target_Model_Allocation',true);
targetComp = mTarget.Architecture.addComponent('Target_Component');

Create the allocation set with name MyAllocation.

allocSet = systemcomposer.allocation.createAllocationSet('MyAllocation',...
 'Source_Model_Allocation','Target_Model_Allocation');

Get the default allocation scenario.

defaultScenario = allocSet.getScenario('Scenario 1');

Allocate components between models.

allocation = defaultScenario.allocate(sourceComp,targetComp);

Update the models with new components.

sourceComp2 = mSource.Architecture.addComponent('Source_Component_2');
targetComp2 = mTarget.Architecture.addComponent('Target_Component_2');

Synchronize changes from models in allocation set

synchronizeChanges(allocSet)

Allocate new components between models

allocation2 = defaultScenario.allocate(sourceComp2,targetComp2);

4 Functions

4-780

Open the allocation editor.

systemcomposer.allocation.editor

Arrange the models so the components appear on the canvas.

Simulink.BlockDiagram.arrangeSystem('Source_Model_Allocation')
Simulink.BlockDiagram.arrangeSystem('Target_Model_Allocation')

Save the models and allocation set.

save(mSource)
save(mTarget)
save(allocSet)

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

More About
Definitions

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Establish Traceability
Between Architectures
and Requirements”

• “Allocate Architectures
in Tire Pressure
Monitoring System”

Version History
Introduced in R2020b

 synchronizeChanges

4-781

See Also
createScenario | deleteScenario | getScenario | load |
systemcomposer.allocation.AllocationSet.find | closeAll | close

Topics
“Create and Manage Allocations Programmatically”

4 Functions

4-782

unlinkDictionary
Package: systemcomposer.arch

Unlink data dictionary from architecture model

Syntax
unlinkDictionary(model)

Description
unlinkDictionary(model) removes the association of the model from its data dictionary.

Examples

Unlink Data Dictionary

Unlink a data dictionary from a model.

model = systemcomposer.createModel("newModel",true);
dictionary = systemcomposer.createDictionary("newDictionary.sldd");
linkDictionary(model,"newDictionary.sldd")
save(dictionary)
save(model)
unlinkDictionary(model)

Input Arguments
model — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

 unlinkDictionary

4-783

More About
Definitions

Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally.

Different types of
architectures describe
different aspects of systems.
You can use views to
visualize a subset of
components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links”

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

4 Functions

4-784

Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Define Port Interfaces
Between Components”

 unlinkDictionary

4-785

Term Definition Application More Information
data element A data element describes a

portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

4 Functions

4-786

Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• Apply an interface
conversion Merge to
merges two or more
message or signal lines.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Version History
Introduced in R2019a

See Also
linkDictionary | saveToDictionary | createDictionary | addReference |
removeReference

Topics
“Create Interfaces”
“Manage Interfaces with Data Dictionaries”

 unlinkDictionary

4-787

update
Package: systemcomposer.analysis

Update architecture model

Syntax
update(instance)

Description
update(instance) updates a specification model to mirror the changes in the architecture instance
instance. The update method is part of the
systemcomposer.analysis.ArchitectureInstance class.

Note This function is part of the instance programmatic interfaces that you can use to analyze the
model iteratively, element-by-element. The instance refers to the element instance on which the
iteration is being performed.

Examples

Update Specification Model

Update the specification model to mirror the changes in the architecture instance.

Create a profile for latency characteristics and save it.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile");

latencybase = profile.addStereotype("LatencyBase");
latencybase.addProperty("latency",Type="double");
latencybase.addProperty("dataRate",Type="double",DefaultValue="10");

connLatency = profile.addStereotype("ConnectorLatency",...
Parent="LatencyProfile.LatencyBase");
connLatency.addProperty("secure",Type="boolean");
connLatency.addProperty("linkDistance",Type="double");

nodeLatency = profile.addStereotype("NodeLatency",...
Parent="LatencyProfile.LatencyBase");
nodeLatency.addProperty("resources",Type="double",DefaultValue="1");

portLatency = profile.addStereotype("PortLatency",...
Parent="LatencyProfile.LatencyBase");
portLatency.addProperty("queueDepth",Type="double");
portLatency.addProperty("dummy",Type="int32");

profile.save

Create a new model. Apply the profile to the model. Apply the stereotype to the architecture.
Instantiate all stereotypes in a profile.
model = systemcomposer.createModel("archModel",true);
model.applyProfile("LatencyProfile");

4 Functions

4-788

model.Architecture.applyStereotype("LatencyProfile.LatencyBase");
instance = instantiate(model.Architecture,"LatencyProfile","NewInstance");

Set a new value for the "dataRate" property on the architecture instance.
instance.setValue("LatencyProfile.LatencyBase.dataRate",5);

Update the specification model according to the architecture instance.
instance.update

Get the new value of the "dataRate" property on the architecture.
value = model.Architecture.getPropertyValue("LatencyProfile.LatencyBase.dataRate")

value =

 '5'

Input Arguments
instance — Architecture instance
architecture instance object

Architecture instance for which specification model is updated, specified as a
systemcomposer.analysis.ArchitectureInstance object.

More About
Definitions

Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function”

• “Analyze Architecture”
• “Simple Roll-Up Analysis

Using Robot System with
Properties”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

 update

4-789

Term Definition Application More Information
instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Version History
Introduced in R2019a

See Also
instantiate | systemcomposer.analysis.Instance | loadInstance | deleteInstance |
save | lookup | iterate | refresh

Topics
“Write Analysis Function”

4 Functions

4-790

systemcomposer.updateLinksToReferenceRequire
ments
Update requirement links to model reference requirements

Syntax
systemcomposer.updateLinksToReferenceRequirements(modelName,linkDomain,
documentPathOrID)

Description
systemcomposer.updateLinksToReferenceRequirements(modelName,linkDomain,
documentPathOrID) imports the external requirement document into Requirements Toolbox as a
reference requirement and updates the requirement links to point to the imported set. You can use
the systemcomposer.updateLinksToReferenceRequirements function in System Composer to
make the requirement links point to imported referenced requirements instead of external
documents.

Examples

Update Reference Requirement Links from Imported File

After importing requirement links from a file, update links to reference requirements for the model.
When you convert the links to reference requirement links, the links are contained in the model in an
SLREQX file to make full use of Requirements Toolbox™ functionality.

Import Requirement Links from Word File

Before running the code, follow these steps to prepare your workspace.

Note: Importing or linking requirements from an imported file is only supported on Windows. A web-
based Microsoft® Office file stored in SharePoint or OneDrive will not work. Save this file and
supporting files in a local folder to continue.

1. Open the Microsoft Word file Functional_Requirements.docx with the requirements listed.
Highlight the requirement to link. For example, highlight these lines.

1.1.2 Flight Computer
ID: 25
Description: Aircraft shall provide a flight computer to autonomously conduct safe flight operations from launch to recovery

2. Open the reqImportExample.slx model.

model = systemcomposer.openModel("reqImportExample");

3. In the model, select the component to which to link the requirement. Right-click the component
and select Requirements > Link to Selection in Word. Keep the Word file
Functional_Requirements.docx open for the next steps.

 systemcomposer.updateLinksToReferenceRequirements

4-791

Before requirement links are integrated within the model, the links depend on the source document,
the Word file Functional_Requirements.docx. To view the requirement links, open the
Requirements Perspective from the bottom-right corner of the reqImportExample.slx model
palette.

4 Functions

4-792

Update Links to Reference Requirements

Use these steps to update requirement links to integrate with and be referenced from within the
model.

1. Export the reqImportExample.slx model and save to an external file: exportedModel.xls

exportedSet = systemcomposer.exportModel("reqImportExample");
SaveToExcel("exportedModel",exportedSet);

2. Use the external file exportedModel.xls to import requirement links into another model:
reqNewExample.slx

structModel = ImportModelFromExcel("exportedModel.xls","Components","Ports", ...
"Connections","PortInterfaces","RequirementLinks");
structModel.readTableFromExcel

systemcomposer.importModel("reqNewExample",structModel.Components, ...
structModel.Ports,structModel.Connections,structModel.Interfaces,structModel.RequirementLinks);

3. To integrate the requirement links to the new model reqNewExample.slx, update references
within the model.

systemcomposer.updateLinksToReferenceRequirements("reqNewExample","linktype_rmi_word","Functional_Requirements.docx")

4. Open the Requirements Perspective from the bottom right corner of the model palette to view the
new requirement by setting View to Requirements.

 systemcomposer.updateLinksToReferenceRequirements

4-793

This requirement is saved in a requirement set Functional_Requirements.slreqx and used
directly in the requirement link. Change the View to Links to view the requirement link.

4 Functions

4-794

Input Arguments
modelName — Name of model
character vector | string

Name of model, specified as a character vector or string.
Example: "exMobileRobot"
Data Types: char | string

linkDomain — Link domain
character vector | string

Link domain, specified as a character vector or string. See “Custom Link Types” (Requirements
Toolbox) for more information on identifying your link type or generating custom link types.
Example: "linktype_rmi_word"
Data Types: char | string

documentPathOrID — Full document path
character vector | string

Full document path, specified as a character vector or string.
Example: "Functional_Requirements.docx"
Data Types: char | string

 systemcomposer.updateLinksToReferenceRequirements

4-795

More About
Definitions

Term Definition Application More Information
requirement
s

Requirements are a
collection of statements
describing the desired
behavior and characteristics
of a system. Requirements
ensure system design
integrity and are
achievable, verifiable,
unambiguous, and
consistent with each other.
Each level of design should
have appropriate
requirements.

To enhance traceability of
requirements, link system,
functional, customer,
performance, or design
requirements to
components and ports. Link
requirements to each other
to represent derived or
allocated requirements.
Manage requirements from
the Requirements
Perspective on an
architecture model or
through custom views.
Assign test cases to
requirements using the Test
Manager for verification
and validation.

• “Link and Trace
Requirements”

• “Establish Traceability
Between Architectures
and Requirements”

requirement
set

A requirement set is a
collection of requirements.
You can structure the
requirements hierarchically
and link them to
components or ports.

Use the Requirements
Editor to edit and refine
requirements in a
requirement set.
Requirement sets are stored
in SLREQX files. You can
create a new requirement
set and author requirements
using Requirements
Toolbox, or import
requirements from
supported third-party tools.

• “Allocate and Trace
Requirements from
Design to Verification”

• “Manage Requirements”

requirement
link

A link is an object that
relates two model-based
design elements. A
requirement link is a link
where the destination is a
requirement. You can link
requirements to
components or ports.

View links using the
Requirements Perspective
in System Composer. Select
a requirement in the
Requirements Browser to
highlight the component or
the port to which the
requirement is assigned.
Links are stored externally
as SLMX files.

• “Create Architecture
Model with Interfaces
and Requirement Links”

• “Update Reference
Requirement Links from
Imported File” on page
4-791

4 Functions

4-796

Term Definition Application More Information
test harness A test harness is a model

that isolates the component
under test with inputs,
outputs, and verification
blocks configured for
testing scenarios. You can
create a test harness for a
model component or for a
full model. A test harness
gives you a separate testing
environment for a model or
a model component.

Create a test harness for a
System Composer
component to validate
simulation results and verify
design. To edit the
interfaces while you are
testing the behavior of a
component in a test
harness, use the Interface
Editor.

• “Verify and Validate
Requirements”

• “Create a Test Harness”
(Simulink Test)

Version History
Introduced in R2020b

See Also
importModel | exportModel

Topics
“Allocate and Trace Requirements from Design to Verification”
“Import and Export Architecture Models”
“Custom Link Types” (Requirements Toolbox)

 systemcomposer.updateLinksToReferenceRequirements

4-797

Methods

5

find
Class: systemcomposer.rptgen.finder.AllocationListFinder
Package: systemcomposer.rptgen.finder

Find allocations to and from component

Syntax
result = find(finder)

Description
result = find(finder) finds allocations to or from a particular component for the
AllocationList search result.

Input Arguments
finder — Allocation list finder
allocation list finder object

Allocation list finder, specified as a systemcomposer.rptgen.finder.AllocationListFinder
object.

Output Arguments
result — Allocation list result
allocation list result object

Allocation list result, returned as a systemcomposer.rptgen.finder.AllocationListResult
object.

Examples

Generate AllocationList Result Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";

5 Methods

5-2

chapter = Chapter("Title",allocationListFinder.ComponentName);
result = find(allocationListFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | next | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-3

hasNext
Class: systemcomposer.rptgen.finder.AllocationListFinder
Package: systemcomposer.rptgen.finder

Determine if allocation list search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the AllocationList search result queue is
nonempty.

Input Arguments
finder — Allocation list finder
allocation list finder object

Allocation list finder, specified as a systemcomposer.rptgen.finder.AllocationListFinder
object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate AllocationList Finder Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";

5 Methods

5-4

chapter = Chapter("Title","Allocations");
while hasNext(allocationListFinder)
 allocations = next(allocationListFinder);
 sect = Section("Title",allocationListFinder.ComponentName);
 add(sect,allocations);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-5

next
Class: systemcomposer.rptgen.finder.AllocationListFinder
Package: systemcomposer.rptgen.finder

Get next allocation list search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next AllocationList search result.

Input Arguments
finder — Allocation list finder
allocation list finder object

Allocation list finder, specified as a systemcomposer.rptgen.finder.AllocationListFinder
object.

Output Arguments
result — Allocation list result
allocation list result object

Allocation list result, returned as a systemcomposer.rptgen.finder.AllocationListResult
object.

Examples

Generate AllocationList Finder Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");
allocationListFinder.ComponentName = "mTestModel/Component1";
chapter = Chapter("Title","Allocations");
while hasNext(allocationListFinder)

5 Methods

5-6

 allocations = next(allocationListFinder);
 sect = Section("Title",allocationListFinder.ComponentName);
 add(sect,allocations);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-7

getReporter
Class: systemcomposer.rptgen.finder.AllocationListResult
Package: systemcomposer.rptgen.finder

Get allocation list reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
allocations in a component. You can use this reporter to customize what information is included and
how the information is formatted. See the systemcomposer.rptgen.report.AllocationList
reporter class for more information on how to customize the reporter.

Input Arguments
result — Allocation list result
allocation list result object

Allocation list result, specified as a systemcomposer.rptgen.finder.AllocationListResult
object.

Output Arguments
reporter — Allocation list reporter
allocation list reporter object

Allocation list reporter, returned as a systemcomposer.rptgen.report.AllocationList object.

Examples

Generate AllocationList Result Report

Use the AllocationListFinder and AllocationListResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationListResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocations"));
add(rpt,TableOfContents);

allocationListFinder = AllocationListFinder("AllocationSet.mldatx");

5 Methods

5-8

allocationListFinder.ComponentName = "mTestModel/Component1";
chapter = Chapter("Title",allocationListFinder.ComponentName);
result = find(allocationListFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 getReporter

5-9

find
Class: systemcomposer.rptgen.finder.AllocationSetFinder
Package: systemcomposer.rptgen.finder

Find information about allocation set

Syntax
result = find(finder)

Description
result = find(finder) finds information about the allocation set for the AllocationSet search
result.

Input Arguments
finder — Allocation set finder
allocation set finder object

Allocation set finder, specified as a systemcomposer.rptgen.finder.AllocationSetFinder
object.

Output Arguments
result — Allocation set result
allocation set result object

Allocation set result, returned as a systemcomposer.rptgen.finder.AllocationSetResult
object.

Examples

Generate AllocationSet Result Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Allocation Sets");

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");

5 Methods

5-10

result = find(allocationSetFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-11

hasNext
Class: systemcomposer.rptgen.finder.AllocationSetFinder
Package: systemcomposer.rptgen.finder

Determine if allocation set search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the AllocationSet search result queue is
nonempty.

Input Arguments
finder — Allocation set finder
allocation set finder object

Allocation set finder, specified as a systemcomposer.rptgen.finder.AllocationSetFinder
object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate AllocationSet Finder Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
chapter = Chapter("Title","Allocation Set");

5 Methods

5-12

while hasNext(allocationSetFinder)
 allocationSets = next(allocationSetFinder);
 sect = Section(strcat("Allocations in ",allocationSets.Name));
 add(sect,allocationSets);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-13

next
Class: systemcomposer.rptgen.finder.AllocationSetFinder
Package: systemcomposer.rptgen.finder

Get next allocation set search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next AllocationSet search result.

Input Arguments
finder — Allocation set finder
allocation set finder object

Allocation set finder, specified as a systemcomposer.rptgen.finder.AllocationSetFinder
object.

Output Arguments
result — Allocation set result
allocation set result object

Allocation set result, returned as a systemcomposer.rptgen.finder.AllocationSetResult
object.

Examples

Generate AllocationSet Finder Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
chapter = Chapter("Title","Allocation Set");

while hasNext(allocationSetFinder)

5 Methods

5-14

 allocationSets = next(allocationSetFinder);
 sect = Section(strcat("Allocations in ",allocationSets.Name));
 add(sect,allocationSets);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-15

getReporter
Class: systemcomposer.rptgen.finder.AllocationSetResult
Package: systemcomposer.rptgen.finder

Get allocation set reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
allocation sets in a model. You can use this reporter to customize what information is included and
how the information is formatted. See the systemcomposer.rptgen.report.AllocationSet
reporter class for more information on how to customize the reporter.

Input Arguments
result — Allocation set result
allocation set result object

Allocation set result, specified as a systemcomposer.rptgen.finder.AllocationSetResult
object.

Output Arguments
reporter — Allocation set reporter
allocation set reporter object

Allocation set reporter, returned as a systemcomposer.rptgen.report.AllocationSet object.

Examples

Generate AllocationSet Result Report

Use the AllocationSetFinder and AllocationSetResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

rpt = slreportgen.report.Report(output="AllocationSetResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Allocation Sets"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Allocation Sets");

5 Methods

5-16

allocationSetFinder = AllocationSetFinder("AllocationSet.mldatx");
result = find(allocationSetFinder);
reporter = getReporter(result);

add(rpt,chapter);
append(rpt,reporter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | createTemplate
| customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 getReporter

5-17

find
Class: systemcomposer.rptgen.finder.ComponentFinder
Package: systemcomposer.rptgen.finder

Find information about component

Syntax
result = find(finder)

Description
result = find(finder) finds information about a component for the Component search result.

Input Arguments
finder — Component finder
component finder object

Component finder, specified as a systemcomposer.rptgen.finder.ComponentFinder object.

Output Arguments
result — Component result
component result object | array of component result objects

Component result, returned as a systemcomposer.rptgen.finder.ComponentResult object or
an array of systemcomposer.rptgen.finder.ComponentResult objects.

Examples

Generate Component Result Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Components");

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;
result = find(componentFinder);

5 Methods

5-18

for i = result
 reporter = getReporter(i);
 reporter.IncludeProperties = false;
 reporter.IncludeSnapshot = false;
 add(chapter,reporter);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-19

hasNext
Class: systemcomposer.rptgen.finder.ComponentFinder
Package: systemcomposer.rptgen.finder

Determine if component search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Component search result queue is
nonempty.

Input Arguments
finder — Component finder
component finder object

Component finder, specified as a systemcomposer.rptgen.finder.ComponentFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Component Finder Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;

5 Methods

5-20

chapter = Chapter("Components in mTestModel");

while hasNext(componentFinder)
 componentResult = next(componentFinder);
 sect = Section(componentResult.Name);
 add(sect,componentResult);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | next | getReporter | createTemplate
| customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-21

next
Class: systemcomposer.rptgen.finder.ComponentFinder
Package: systemcomposer.rptgen.finder

Get next component search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Component search result.

Input Arguments
finder — Component finder
component finder object

Component finder, specified as a systemcomposer.rptgen.finder.ComponentFinder object.

Output Arguments
result — Component result
component result object

Component result, returned as a systemcomposer.rptgen.finder.ComponentResult object.

Examples

Generate Component Finder Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;

chapter = Chapter("Components in mTestModel");

5 Methods

5-22

while hasNext(componentFinder)
 componentResult = next(componentFinder);
 sect = Section(componentResult.Name);
 add(sect,componentResult);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-23

getReporter
Class: systemcomposer.rptgen.finder.ComponentResult
Package: systemcomposer.rptgen.finder

Get component reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
components in a model. You can use this reporter to customize what information is included and how
the information is formatted. See the systemcomposer.rptgen.report.Component reporter class
for more information on how to customize the reporter.

Input Arguments
result — Component result
component result object

Component result, specified as a systemcomposer.rptgen.finder.ComponentResult object.

Output Arguments
reporter — Component reporter
component reporter object

Component reporter, returned as a systemcomposer.rptgen.report.Component object.

Examples

Generate Component Result Report

Use the ComponentFinder and ComponentResult classes to generate a report.

import systemcomposer.rptgen.finder.*
import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.query.*

rpt = slreportgen.report.Report(output="ComponentResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title","Components"));
add(rpt,TableOfContents);
chapter = Chapter("Title","Components");

5 Methods

5-24

componentFinder = ComponentFinder("mTestModel");
componentFinder.Query = AnyComponent;
result = find(componentFinder);

for i = result
 reporter = getReporter(i);
 reporter.IncludeProperties = false;
 reporter.IncludeSnapshot = false;
 add(chapter,reporter);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 getReporter

5-25

find
Class: systemcomposer.rptgen.finder.ConnectorFinder
Package: systemcomposer.rptgen.finder

Find information about connector

Syntax
result = find(finder)

Description
result = find(finder) finds information about a connector for the Connector search result.

Input Arguments
finder — Connector finder
connector finder object

Connector finder, specified as a systemcomposer.rptgen.finder.ConnectorFinder object.

Output Arguments
result — Connector result
connector result object

Connector result, returned as a systemcomposer.rptgen.finder.ConnectorResult object.

Examples

Generate Connector Result Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

connectorFinder = ConnectorFinder(model_name);
connectorFinder.Filter = "Component";
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components";

5 Methods

5-26

chapter = Chapter("Title","Connectors");
result = find(connectorFinder);
add(rpt,chapter);

for r = result
 reporter = getReporter(r);
 append(rpt,reporter);
end

close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-27

hasNext
Class: systemcomposer.rptgen.finder.ConnectorFinder
Package: systemcomposer.rptgen.finder

Determine if connector search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Connector search result queue is
nonempty.

Input Arguments
finder — Connector finder
connector finder object

Connector finder, specified as a systemcomposer.rptgen.finder.ConnectorFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Connector Finder Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

5 Methods

5-28

connectorFinder = ConnectorFinder(model_name);
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components/GPS Module";
connectorFinder.Filter = "Component";
chapter = Chapter("Title","Connectors");
while hasNext(connectorFinder)
 connector = next(connectorFinder);
 sect = Section("Title",connector.Name);
 add(sect,connector);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | next | getReporter | createTemplate
| customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-29

next
Class: systemcomposer.rptgen.finder.ConnectorFinder
Package: systemcomposer.rptgen.finder

Get next connector search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Connector search result.

Input Arguments
finder — Connector finder
connector finder object

Connector finder, specified as a systemcomposer.rptgen.finder.ConnectorFinder object.

Output Arguments
result — Connector result
connector result object

Connector result, returned as a systemcomposer.rptgen.finder.ConnectorResult object.

Examples

Generate Connector Finder Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

connectorFinder = ConnectorFinder(model_name);
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components/GPS Module";
connectorFinder.Filter = "Component";

5 Methods

5-30

chapter = Chapter("Title","Connectors");
while hasNext(connectorFinder)
 connector = next(connectorFinder);
 sect = Section("Title",connector.Name);
 add(sect,connector);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-31

getReporter
Class: systemcomposer.rptgen.finder.ConnectorResult
Package: systemcomposer.rptgen.finder

Get connector reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
connectors in a component. You can use this reporter to customize what information is included and
how the information is formatted. See the systemcomposer.rptgen.report.Connector reporter
class for more information on how to customize the reporter.

Input Arguments
result — Connector result
connector result object

Connector result, specified as a systemcomposer.rptgen.finder.ConnectorResult object.

Output Arguments
reporter — Connector reporter
connector reporter object

Connector reporter, returned as a systemcomposer.rptgen.report.Connector object.

Examples

Generate Connector Result Report

Use the ConnectorFinder and ConnectorResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ConnectorResultReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Connectors in %s Model',model_name)));
add(rpt,TableOfContents);

5 Methods

5-32

connectorFinder = ConnectorFinder(model_name);
connectorFinder.Filter = "Component";
connectorFinder.ComponentName = "scExampleSmallUAVModel/Flight Support Components";
chapter = Chapter("Title","Connectors");
result = find(connectorFinder);
add(rpt,chapter);

for r = result
 reporter = getReporter(r);
 append(rpt,reporter);
end

close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 getReporter

5-33

find
Class: systemcomposer.rptgen.finder.DictionaryFinder
Package: systemcomposer.rptgen.finder

Find information about dictionary

Syntax
result = find(finder)

Description
result = find(finder) finds information about a dictionary for the Dictionary search result.

Input Arguments
finder — Dictionary finder
dictionary finder object

Dictionary finder, specified as a systemcomposer.rptgen.finder.DictionaryFinder object.

Output Arguments
result — Dictionary result
dictionary result object

Dictionary result, returned as a systemcomposer.rptgen.finder.DictionaryResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.DictionaryFinder |
systemcomposer.rptgen.finder.DictionaryResult | hasNext | next

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-34

hasNext
Class: systemcomposer.rptgen.finder.DictionaryFinder
Package: systemcomposer.rptgen.finder

Determine if dictionary search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Dictionary search result queue is
nonempty.

Input Arguments
finder — Dictionary finder
dictionary finder object

Dictionary finder, specified as a systemcomposer.rptgen.finder.DictionaryFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Dictionary Finder Report

Use the DictionaryFinder and DictionaryResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="DictionaryFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Dictionaries in %s Model',model_name)));
add(rpt,TableOfContents);

 hasNext

5-35

dictFinder = DictionaryFinder(model_name);

chapter = Chapter("Title","Dictionaries");
while hasNext(dictFinder)
 dict = next(dictFinder);
 sect = Section("Title",dict.Name);
 add(sect,dict);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.DictionaryFinder |
systemcomposer.rptgen.finder.DictionaryResult | find | next

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-36

next
Class: systemcomposer.rptgen.finder.DictionaryFinder
Package: systemcomposer.rptgen.finder

Get next dictionary search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Dictionary search result.

Input Arguments
finder — Dictionary finder
dictionary finder object

Dictionary finder, specified as a systemcomposer.rptgen.finder.DictionaryFinder object.

Output Arguments
result — Dictionary result
dictionary result object

Dictionary result, returned as a systemcomposer.rptgen.finder.DictionaryResult object.

Examples

Generate Dictionary Finder Report

Use the DictionaryFinder and DictionaryResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="DictionaryFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Dictionaries in %s Model',model_name)));
add(rpt,TableOfContents);

dictFinder = DictionaryFinder(model_name);

chapter = Chapter("Title","Dictionaries");

 next

5-37

while hasNext(dictFinder)
 dict = next(dictFinder);
 sect = Section("Title",dict.Name);
 add(sect,dict);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt)

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.DictionaryFinder |
systemcomposer.rptgen.finder.DictionaryResult | find | hasNext

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-38

find
Class: systemcomposer.rptgen.finder.FunctionFinder
Package: systemcomposer.rptgen.finder

Find information about function

Syntax
result = find(finder)

Description
result = find(finder) finds information about a function for the Function search result.

Input Arguments
finder — Function finder
function finder object

Function finder, specified as a systemcomposer.rptgen.finder.FunctionFinder object.

Output Arguments
result — Function result
function result object

Function result, returned as a systemcomposer.rptgen.finder.FunctionResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-39

hasNext
Class: systemcomposer.rptgen.finder.FunctionFinder
Package: systemcomposer.rptgen.finder

Determine if function search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Function search result queue is
nonempty.

Input Arguments
finder — Function finder
function finder object

Function finder, specified as a systemcomposer.rptgen.finder.FunctionFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | next | getReporter | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-40

next
Class: systemcomposer.rptgen.finder.FunctionFinder
Package: systemcomposer.rptgen.finder

Get next function search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Function search result.

Input Arguments
finder — Function finder
function finder object

Function finder, specified as a systemcomposer.rptgen.finder.FunctionFinder object.

Output Arguments
result — Function result
function result object

Function result, returned as a systemcomposer.rptgen.finder.FunctionResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-41

getReporter
Class: systemcomposer.rptgen.finder.FunctionResult
Package: systemcomposer.rptgen.finder

Get function reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
functions in a software architecture model. You can use this reporter to customize what information is
included and how the information is formatted. See the
systemcomposer.rptgen.report.Function reporter class for more information on how to
customize the reporter.

Input Arguments
result — Function result
function result object

Function result, specified as a systemcomposer.rptgen.finder.FunctionResult object.

Output Arguments
reporter — Function reporter
function reporter object

Function reporter, returned as a systemcomposer.rptgen.report.Function object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-42

find
Class: systemcomposer.rptgen.finder.InterfaceFinder
Package: systemcomposer.rptgen.finder

Find information about interface

Syntax
result = find(finder)

Description
result = find(finder) finds information about an interface for the Interface search result.

Input Arguments
finder — Interface finder
interface finder object

Interface finder, specified as a systemcomposer.rptgen.finder.InterfaceFinder object.

Output Arguments
result — Interface result
interface result object

Interface result, returned as a systemcomposer.rptgen.finder.InterfaceResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-43

hasNext
Class: systemcomposer.rptgen.finder.InterfaceFinder
Package: systemcomposer.rptgen.finder

Determine if interface search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Interface search result queue is
nonempty.

Input Arguments
finder — Interface finder
interface finder object

Interface finder, specified as a systemcomposer.rptgen.finder.InterfaceFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Interface Finder Report

Use the InterfaceFinder and InterfaceResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="InterfaceFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Interfaces in %s Model',model_name)));
add(rpt,TableOfContents);

5 Methods

5-44

intfFinder = InterfaceFinder(model_name);

chapter = Chapter("Title","Interfaces");
while hasNext(intfFinder)
 interface = next(intfFinder);
 sect = Section("Title",interface.InterfaceName);
 add(sect,interface);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | next | getReporter | createTemplate
| customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-45

next
Class: systemcomposer.rptgen.finder.InterfaceFinder
Package: systemcomposer.rptgen.finder

Get next interface search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Interface search result.

Input Arguments
finder — Interface finder
interface finder object

Interface finder, specified as a systemcomposer.rptgen.finder.InterfaceFinder object.

Output Arguments
result — Interface result
interface result object

Interface result, returned as a systemcomposer.rptgen.finder.InterfaceResult object.

Examples

Generate Interface Finder Report

Use the InterfaceFinder and InterfaceResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="InterfaceFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Interfaces in %s Model',model_name)));
add(rpt,TableOfContents);

intfFinder = InterfaceFinder(model_name);

chapter = Chapter("Title","Interfaces");

5 Methods

5-46

while hasNext(intfFinder)
 interface = next(intfFinder);
 sect = Section("Title",interface.InterfaceName);
 add(sect,interface);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-47

getReporter
Class: systemcomposer.rptgen.finder.InterfaceResult
Package: systemcomposer.rptgen.finder

Get interface reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
interfaces in a model. You can use this reporter to customize what information is included and how
the information is formatted. See the systemcomposer.rptgen.report.Interface reporter class
for more information on how to customize the reporter.

Input Arguments
result — Interface result
interface result object

Interface result, specified as a systemcomposer.rptgen.finder.InterfaceResult object.

Output Arguments
reporter — Interface reporter
interface reporter object

Interface reporter, returned as a systemcomposer.rptgen.report.Interface object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-48

find
Class: systemcomposer.rptgen.finder.ProfileFinder
Package: systemcomposer.rptgen.finder

Find information about profile

Syntax
result = find(finder)

Description
result = find(finder) finds information about a profile for the Profile search result.

Input Arguments
finder — Profile finder
profile finder object

Profile finder, specified as a systemcomposer.rptgen.finder.ProfileFinder object.

Output Arguments
result — Profile result
profile result object

Profile result, returned as a systemcomposer.rptgen.finder.ProfileResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-49

hasNext
Class: systemcomposer.rptgen.finder.ProfileFinder
Package: systemcomposer.rptgen.finder

Determine if profile search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Profile search result queue is nonempty.

Input Arguments
finder — Profile finder
profile finder object

Profile finder, specified as a systemcomposer.rptgen.finder.ProfileFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Profile Finder Report

Use the ProfileFinder and ProfileResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ProfileFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Profiles in %s Model',model_name)));
add(rpt,TableOfContents);

profileFinder = ProfileFinder("UAVComponent");

5 Methods

5-50

chapter = Chapter("Title","Profiles");
while hasNext(profileFinder)
 profile = next(profileFinder);
 sect = Section("Title",profile.Name);
 add(sect,profile);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | next | getReporter | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-51

next
Class: systemcomposer.rptgen.finder.ProfileFinder
Package: systemcomposer.rptgen.finder

Get next profile search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Profile search result.

Input Arguments
finder — Profile finder
profile finder object

Profile finder, specified as a systemcomposer.rptgen.finder.ProfileFinder object.

Output Arguments
result — Profile result
profile result object

Profile result, returned as a systemcomposer.rptgen.finder.ProfileResult object.

Examples

Generate Profile Finder Report

Use the ProfileFinder and ProfileResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ProfileFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Profiles in %s Model',model_name)));
add(rpt,TableOfContents);

profileFinder = ProfileFinder("UAVComponent");

chapter = Chapter("Title","Profiles");

5 Methods

5-52

while hasNext(profileFinder)
 profile = next(profileFinder);
 sect = Section("Title",profile.Name);
 add(sect,profile);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-53

getReporter
Class: systemcomposer.rptgen.finder.ProfileResult
Package: systemcomposer.rptgen.finder

Get profile reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
profiles in a model. You can use this reporter to customize what information is included and how the
information is formatted. See the systemcomposer.rptgen.report.Profile reporter class for
more information on how to customize the reporter.

Input Arguments
result — Profile result
profile result object

Profile result, specified as a systemcomposer.rptgen.finder.ProfileResult object.

Output Arguments
reporter — Profile reporter
profile reporter object

Profile reporter, returned as a systemcomposer.rptgen.report.Profile object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-54

find
Class: systemcomposer.rptgen.finder.RequirementLinkFinder
Package: systemcomposer.rptgen.finder

Find information about requirement link

Syntax
result = find(finder)

Description
result = find(finder) finds information about a requirement link for the RequirementLink
search result.

Input Arguments
finder — Requirement link finder
requirement link finder object

Requirement link finder, specified as a
systemcomposer.rptgen.finder.RequirementLinkFinder object.

Output Arguments
result — Requirement link result
requirement link result object

Requirement link result, returned as a
systemcomposer.rptgen.finder.RequirementLinkFinder object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-55

hasNext
Class: systemcomposer.rptgen.finder.RequirementLinkFinder
Package: systemcomposer.rptgen.finder

Determine if requirement link search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the RequirementLink search result queue is
nonempty.

Input Arguments
finder — Requirement link finder
requirement link finder object

Requirement link finder, specified as a
systemcomposer.rptgen.finder.RequirementLinkFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-56

next
Class: systemcomposer.rptgen.finder.RequirementLinkFinder
Package: systemcomposer.rptgen.finder

Get next requirement link search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next RequirementLink search result.

Input Arguments
finder — Requirement link finder
requirement link finder object

Requirement link finder, specified as a
systemcomposer.rptgen.finder.RequirementLinkFinder object.

Output Arguments
result — Requirement link result
requirement link result object

Requirement link result, returned as a
systemcomposer.rptgen.finder.RequirementLinkFinder object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-57

getReporter
Class: systemcomposer.rptgen.finder.RequirementLinkResult
Package: systemcomposer.rptgen.finder

Get requirement links reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
requirement links in a requirement link set. You can use this reporter to customize what information
is included and how the information is formatted. See the
systemcomposer.rptgen.report.RequirementLink reporter class for more information on how
to customize the reporter.

Input Arguments
result — Requirement link result
requirement link result object

Requirement link result, specified as a
systemcomposer.rptgen.finder.RequirementLinkResult object.

Output Arguments
reporter — Requirement link reporter
requirement link reporter object

Requirement link reporter, returned as a systemcomposer.rptgen.report.RequirementLink
object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-58

find
Class: systemcomposer.rptgen.finder.RequirementSetFinder
Package: systemcomposer.rptgen.finder

Find information about requirement

Syntax
result = find(finder)

Description
result = find(finder) finds information about a requirement for the RequirementSet search
result.

Input Arguments
finder — Requirement set finder
requirement set finder object

Requirement set finder, specified as a
systemcomposer.rptgen.finder.RequirementSetFinder object.

Output Arguments
result — Requirement set result
requirement set result object

Requirement set result, returned as a
systemcomposer.rptgen.finder.RequirementSetResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-59

hasNext
Class: systemcomposer.rptgen.finder.RequirementSetFinder
Package: systemcomposer.rptgen.finder

Determine if requirement set search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the RequirementSet search result queue is
nonempty.

Input Arguments
finder — Requirement set finder
requirement set finder object

Requirement set finder, specified as a
systemcomposer.rptgen.finder.RequirementSetFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-60

next
Class: systemcomposer.rptgen.finder.RequirementSetFinder
Package: systemcomposer.rptgen.finder

Get next requirement set search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next RequirementSet search result.

Input Arguments
finder — Requirement set finder
requirement set finder object

Requirement set finder, specified as a
systemcomposer.rptgen.finder.RequirementSetFinder object.

Output Arguments
result — Requirement set result
requirement set result object

Requirement set result, returned as a
systemcomposer.rptgen.finder.RequirementSetResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-61

getReporter
Class: systemcomposer.rptgen.finder.RequirementSetResult
Package: systemcomposer.rptgen.finder

Get requirements reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
requirements in a requirement set. You can use this reporter to customize what information is
included and how the information is formatted. See the
systemcomposer.rptgen.report.RequirementSet reporter class for more information on how
to customize the reporter.

Input Arguments
result — Requirement set result
requirement set result object

Requirement set result, specified as a
systemcomposer.rptgen.finder.RequirementSetResult object.

Output Arguments
reporter — Requirement set reporter
requirement set reporter object

Requirement set reporter, returned as a systemcomposer.rptgen.report.RequirementSet
object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-62

find
Class: systemcomposer.rptgen.finder.StereotypeFinder
Package: systemcomposer.rptgen.finder

Find information about stereotype

Syntax
result = find(finder)

Description
result = find(finder) finds information about a stereotype for the Stereotype search result.

Input Arguments
finder — Stereotype finder
stereotype finder object

Stereotype finder, specified as a systemcomposer.rptgen.finder.StereotypeFinder object.

Output Arguments
result — Stereotype result
stereotype result object

Stereotype result, returned as a systemcomposer.rptgen.finder.StereotypeResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | hasNext | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-63

hasNext
Class: systemcomposer.rptgen.finder.StereotypeFinder
Package: systemcomposer.rptgen.finder

Determine if stereotype search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the Stereotype search result queue is
nonempty.

Input Arguments
finder — Stereotype finder
stereotype finder object

Stereotype finder, specified as a systemcomposer.rptgen.finder.StereotypeFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate Stereotype Finder Report

Use the StereotypeFinder and StereotypeResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="StereotypeFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Stereotypes in %s Model',model_name)));
add(rpt,TableOfContents);

5 Methods

5-64

stereotypeFinder = StereotypeFinder("UAVComponent");
chapter = Chapter("Title","Stereotypes");
while hasNext(stereotypeFinder)
 stereotype = next(stereotypeFinder);
 sect = Section("Title",stereotype.Name);
 add(sect,stereotype);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | next | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-65

next
Class: systemcomposer.rptgen.finder.StereotypeFinder
Package: systemcomposer.rptgen.finder

Get next stereotype search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next Stereotype search result.

Input Arguments
finder — Stereotype finder
stereotype finder object

Stereotype finder, specified as a systemcomposer.rptgen.finder.StereotypeFinder object.

Output Arguments
result — Stereotype result
stereotype result object

Stereotype result, returned as a systemcomposer.rptgen.finder.StereotypeResult object.

Examples

Generate Stereotype Finder Report

Use the StereotypeFinder and StereotypeResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scExampleSmallUAV
model_name = "scExampleSmallUAVModel";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="StereotypeFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Stereotypes in %s Model',model_name)));
add(rpt,TableOfContents);

stereotypeFinder = StereotypeFinder("UAVComponent");
chapter = Chapter("Title","Stereotypes");
while hasNext(stereotypeFinder)

5 Methods

5-66

 stereotype = next(stereotypeFinder);
 sect = Section("Title",stereotype.Name);
 add(sect,stereotype);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | getReporter |
createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-67

getReporter
Class: systemcomposer.rptgen.finder.StereotypeResult
Package: systemcomposer.rptgen.finder

Get stereotype reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
stereotypes in a profile. You can use this reporter to customize what information is included and how
the information is formatted. See the systemcomposer.rptgen.report.Stereotype reporter
class for more information on how to customize the reporter.

Input Arguments
result — Stereotype result
stereotype result object

Stereotype result, specified as a systemcomposer.rptgen.finder.StereotypeResult object.

Output Arguments
reporter — Stereotype reporter
stereotype reporter object

Stereotype reporter, returned as a systemcomposer.rptgen.report.Stereotype object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | createTemplate |
customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-68

find
Class: systemcomposer.rptgen.finder.ViewFinder
Package: systemcomposer.rptgen.finder

Find information about view

Syntax
result = find(finder)

Description
result = find(finder) finds information about a view for the View search result.

Input Arguments
finder — View finder
view finder object

View finder, specified as a systemcomposer.rptgen.finder.ViewFinder object.

Output Arguments
result — View result
view result object

View result, returned as a systemcomposer.rptgen.finder.ViewResult object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
hasNext | next | getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 find

5-69

hasNext
Class: systemcomposer.rptgen.finder.ViewFinder
Package: systemcomposer.rptgen.finder

Determine if view search result queue is nonempty

Syntax
nonempty = hasNext(finder)

Description
nonempty = hasNext(finder) determines whether the View search result queue is nonempty.

Input Arguments
finder — View finder
view finder object

View finder, specified as a systemcomposer.rptgen.finder.ViewFinder object.

Output Arguments
nonempty — Whether queue is nonempty
true or 1 | false or 0

Whether queue is nonempty, returned as a logical.
Data Types: logical

Examples

Generate View Finder Report

Use the ViewFinder and ViewResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ViewFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Views in %s Model',model_name)));
add(rpt,TableOfContents);

viewFinder = ViewFinder(model_name);

5 Methods

5-70

chapter = Chapter("Title","Views");
while hasNext(viewFinder)
 view = next(viewFinder);
 sect = Section("Title",view.Name);
 add(sect,view);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | next | getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 hasNext

5-71

next
Class: systemcomposer.rptgen.finder.ViewFinder
Package: systemcomposer.rptgen.finder

Get next view search result

Syntax
result = next(finder)

Description
result = next(finder) gets the next View search result.

Input Arguments
finder — View finder
view finder object

View finder, specified as a systemcomposer.rptgen.finder.ViewFinder object.

Output Arguments
result — View result
view result object

View result, returned as a systemcomposer.rptgen.finder.ViewResult object.

Examples

Generate View Finder Report

Use the ViewFinder and ViewResult classes to generate a report.

import mlreportgen.report.*
import slreportgen.report.*
import systemcomposer.rptgen.finder.*

scKeylessEntrySystem
model_name = "KeylessEntryArchitecture";
model = systemcomposer.loadModel(model_name);
rpt = slreportgen.report.Report(output="ViewFinderReport",...
CompileModelBeforeReporting=false);
add(rpt,TitlePage("Title",sprintf('Views in %s Model',model_name)));
add(rpt,TableOfContents);

viewFinder = ViewFinder(model_name);

chapter = Chapter("Title","Views");

5 Methods

5-72

while hasNext(viewFinder)
 view = next(viewFinder);
 sect = Section("Title",view.Name);
 add(sect,view);
 add(chapter,sect);
end

add(rpt,chapter);
close(rpt);
rptview(rpt);

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | getReporter | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 next

5-73

getReporter
Class: systemcomposer.rptgen.finder.ViewResult
Package: systemcomposer.rptgen.finder

Get view reporter

Syntax
reporter = getReporter(result)

Description
reporter = getReporter(result) returns a reporter that is used to include information about
views in a model. You can use this reporter to customize what information is included and how the
information is formatted. See the systemcomposer.rptgen.report.View reporter class for more
information on how to customize the reporter.

Input Arguments
result — View result
view result object

View result, specified as a systemcomposer.rptgen.finder.ViewResult object.

Output Arguments
reporter — View reporter
view reporter object

View reporter, returned as a systemcomposer.rptgen.report.View object.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | next | createTemplate | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-74

createTemplate
Class: systemcomposer.rptgen.report.AllocationList
Package: systemcomposer.rptgen.report

Create allocation list template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default allocation list
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom allocation list template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-75

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-76

customizeReporter
Class: systemcomposer.rptgen.report.AllocationList
Package: systemcomposer.rptgen.report

Create custom allocation list reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates an allocation list class definition
file that is a subclass of the systemcomposer.rptgen.report.AllocationList class. The file is
created at the specified classpath location. The customizeReporter method also copies the
default allocation list templates to the <classpath>/resources/template folder. Use the new
class definition file as a starting point to design a custom allocation list class for your report.

Input Arguments
classpath — Location of custom allocation list class
current working folder (default) | string | character array

Location of custom allocation list class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Allocation list reporter path
string

Allocation list reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-77

getClassFolder
Class: systemcomposer.rptgen.report.AllocationList
Package: systemcomposer.rptgen.report

Allocation list class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the allocation list class
definition file.

Output Arguments
path — Allocation list class definition file location
character array

Allocation list class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationListFinder |
systemcomposer.rptgen.finder.AllocationListResult |
systemcomposer.rptgen.report.AllocationList | find | next | hasNext | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-78

createTemplate
Class: systemcomposer.rptgen.report.AllocationSet
Package: systemcomposer.rptgen.report

Create allocation set template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default allocation set
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom allocation set template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-79

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-80

customizeReporter
Class: systemcomposer.rptgen.report.AllocationSet
Package: systemcomposer.rptgen.report

Create custom allocation set reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates an allocation set class definition file
that is a subclass of the systemcomposer.rptgen.report.AllocationSet class. The file is
created at the specified classpath location. The customizeReporter method also copies the
default allocation list templates to the <classpath>/resources/template folder. Use the new
class definition file as a starting point to design a custom allocation set class for your report.

Input Arguments
classpath — Location of custom allocation set class
current working folder (default) | string | character array

Location of custom allocation set class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Allocation set reporter path
string

Allocation set reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-81

getClassFolder
Class: systemcomposer.rptgen.report.AllocationSet
Package: systemcomposer.rptgen.report

Allocation set class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the allocation set class
definition file.

Output Arguments
path — Allocation set class definition file location
character array

Allocation set class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.AllocationSetFinder |
systemcomposer.rptgen.finder.AllocationSetResult |
systemcomposer.rptgen.report.AllocationSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-82

createTemplate
Class: systemcomposer.rptgen.report.Component
Package: systemcomposer.rptgen.report

Create component template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default component
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom component template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-83

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-84

customizeReporter
Class: systemcomposer.rptgen.report.Component
Package: systemcomposer.rptgen.report

Create custom component reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a component class definition file
that is a subclass of the systemcomposer.rptgen.report.Component class. The file is created at
the specified classpath location. The customizeReporter method also copies the default
component templates to the <classpath>/resources/template folder. Use the new class
definition file as a starting point to design a custom component class for your report.

Input Arguments
classpath — Location of custom component class
current working folder (default) | string | character array

Location of custom component class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Component reporter path
string

Component reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-85

getClassFolder
Class: systemcomposer.rptgen.report.Component
Package: systemcomposer.rptgen.report

Component class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the component class
definition file.

Output Arguments
path — Component class definition file location
character array

Component class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ComponentFinder |
systemcomposer.rptgen.finder.ComponentResult |
systemcomposer.rptgen.report.Component | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-86

createTemplate
Class: systemcomposer.rptgen.report.Connector
Package: systemcomposer.rptgen.report

Create connector template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default connector
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom connector template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | next | hasNext | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-87

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-88

customizeReporter
Class: systemcomposer.rptgen.report.Connector
Package: systemcomposer.rptgen.report

Create custom connector reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a connector class definition file
that is a subclass of the systemcomposer.rptgen.report.Connector class. The file is created at
the specified classpath location. The customizeReporter method also copies the default
connector templates to the <classpath>/resources/template folder. Use the new class
definition file as a starting point to design a custom connector class for your report.

Input Arguments
classpath — Location of custom connector class
current working folder (default) | string | character array

Location of custom connector class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Connector reporter path
string

Connector reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | next | hasNext | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-89

getClassFolder
Class: systemcomposer.rptgen.report.Connector
Package: systemcomposer.rptgen.report

Connector class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the connector class definition
file.

Output Arguments
path — Connector class definition file location
character array

Connector class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ConnectorFinder |
systemcomposer.rptgen.finder.ConnectorResult |
systemcomposer.rptgen.report.Connector | find | next | hasNext | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-90

createTemplate
Class: systemcomposer.rptgen.report.DependencyGraph
Package: systemcomposer.rptgen.report

Create dependency graph template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default dependency
graph template specified by type at the location specified by templatePath. Use the copied
template as a starting point to design a custom dependency graph template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.DependencyGraph | customizeReporter |
getClassFolder

Topics
“System Composer Report Generation for System Architectures”

 createTemplate

5-91

“System Composer Report Generation for Software Architectures”

5 Methods

5-92

customizeReporter
Class: systemcomposer.rptgen.report.DependencyGraph
Package: systemcomposer.rptgen.report

Create custom dependency graph reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a dependency graph class
definition file that is a subclass of the systemcomposer.rptgen.report.DependencyGraph class.
The file is created at the specified classpath location. The customizeReporter method also
copies the default dependency graph templates to the <classpath>/resources/template folder.
Use the new class definition file as a starting point to design a custom dependency graph class for
your report.

Input Arguments
classpath — Location of custom dependency graph class
current working folder (default) | string | character array

Location of custom dependency graph class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Dependency graph reporter path
string

Dependency graph reporter path, returned as a string specifying the path to the derived report class
file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.DependencyGraph | createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-93

getClassFolder
Class: systemcomposer.rptgen.report.DependencyGraph
Package: systemcomposer.rptgen.report

Dependency graph class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the dependency graph class
definition file.

Output Arguments
path — Dependency graph class definition file location
character array

Dependency graph class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.DependencyGraph | createTemplate |
customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-94

createTemplate
Class: systemcomposer.rptgen.report.Function
Package: systemcomposer.rptgen.report

Create function template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default function
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom function template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-95

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-96

customizeReporter
Class: systemcomposer.rptgen.report.Function
Package: systemcomposer.rptgen.report

Create custom function reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a function class definition file that
is a subclass of the systemcomposer.rptgen.report.Function class. The file is created at the
specified classpath location. The customizeReporter method also copies the default function
templates to the <classpath>/resources/template folder. Use the new class definition file as a
starting point to design a custom function class for your report.

Input Arguments
classpath — Location of custom function class
current working folder (default) | string | character array

Location of custom function class, specified as a string or character array. The classpath argument
also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Function reporter path
string

Function reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-97

getClassFolder
Class: systemcomposer.rptgen.report.Function
Package: systemcomposer.rptgen.report

Function class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the function class definition
file.

Output Arguments
path — Function class definition file location
character array

Function class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.FunctionFinder |
systemcomposer.rptgen.finder.FunctionResult |
systemcomposer.rptgen.report.Function | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-98

createTemplate
Class: systemcomposer.rptgen.report.Interface
Package: systemcomposer.rptgen.report

Create interface template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default interface
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom interface template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-99

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-100

customizeReporter
Class: systemcomposer.rptgen.report.Interface
Package: systemcomposer.rptgen.report

Create custom interface reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a interface class definition file that
is a subclass of the systemcomposer.rptgen.report.Interface class. The file is created at the
specified classpath location. The customizeReporter method also copies the default interface
templates to the <classpath>/resources/template folder. Use the new class definition file as a
starting point to design a custom interface class for your report.

Input Arguments
classpath — Location of custom interface class
current working folder (default) | string | character array

Location of custom interface class, specified as a string or character array. The classpath argument
also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Interface reporter path
string

Interface reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-101

getClassFolder
Class: systemcomposer.rptgen.report.Interface
Package: systemcomposer.rptgen.report

Interface class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the interface class definition
file.

Output Arguments
path — Interface class definition file location
character array

Interface class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.InterfaceFinder |
systemcomposer.rptgen.finder.InterfaceResult |
systemcomposer.rptgen.report.Interface | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-102

createTemplate
Class: systemcomposer.rptgen.report.Profile
Package: systemcomposer.rptgen.report

Create profile template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default profile
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom profile template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-103

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-104

customizeReporter
Class: systemcomposer.rptgen.report.Profile
Package: systemcomposer.rptgen.report

Create custom profile reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a profile class definition file that is
a subclass of the systemcomposer.rptgen.report.Profile class. The file is created at the
specified classpath location. The customizeReporter method also copies the default profile
templates to the <classpath>/resources/template folder. Use the new class definition file as a
starting point to design a custom profile class for your report.

Input Arguments
classpath — Location of custom profile class
current working folder (default) | string | character array

Location of custom profile class, specified as a string or character array. The classpath argument
also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Profile reporter path
string

Profile reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-105

getClassFolder
Class: systemcomposer.rptgen.report.Profile
Package: systemcomposer.rptgen.report

Profile class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the profile class definition file.

Output Arguments
path — Profile class definition file location
character array

Profile class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ProfileFinder |
systemcomposer.rptgen.finder.ProfileResult |
systemcomposer.rptgen.report.Profile | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-106

createTemplate
Class: systemcomposer.rptgen.report.RequirementLink
Package: systemcomposer.rptgen.report

Create requirement link template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default requirement
link template specified by type at the location specified by templatePath. Use the copied template
as a starting point to design a custom requirement link template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-107

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-108

customizeReporter
Class: systemcomposer.rptgen.report.RequirementLink
Package: systemcomposer.rptgen.report

Create custom requirement link reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a requirement link class definition
file that is a subclass of the systemcomposer.rptgen.report.RequirementLink class. The file
is created at the specified classpath location. The customizeReporter method also copies the
default requirement link templates to the <classpath>/resources/template folder. Use the new
class definition file as a starting point to design a custom requirement link class for your report.

Input Arguments
classpath — Location of custom requirement link class
current working folder (default) | string | character array

Location of custom requirement link class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Requirement link reporter path
string

Requirement link reporter path, returned as a string specifying the path to the derived report class
file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-109

getClassFolder
Class: systemcomposer.rptgen.report.RequirementLink
Package: systemcomposer.rptgen.report

Requirement link class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the requirement link class
definition file.

Output Arguments
path — Requirement link class definition file location
character array

Requirement link class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementLinkFinder |
systemcomposer.rptgen.finder.RequirementLinkResult |
systemcomposer.rptgen.report.RequirementLink | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-110

createTemplate
Class: systemcomposer.rptgen.report.RequirementSet
Package: systemcomposer.rptgen.report

Create requirement set template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default requirement
set template specified by type at the location specified by templatePath. Use the copied template
as a starting point to design a custom requirement set template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-111

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-112

customizeReporter
Class: systemcomposer.rptgen.report.RequirementSet
Package: systemcomposer.rptgen.report

Create custom requirement set reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a requirement set class definition
file that is a subclass of the systemcomposer.rptgen.report.RequirementSet class. The file is
created at the specified classpath location. The customizeReporter method also copies the
default requirement set templates to the <classpath>/resources/template folder. Use the new
class definition file as a starting point to design a custom requirement set class for your report.

Input Arguments
classpath — Location of custom requirement set class
current working folder (default) | string | character array

Location of custom requirement set class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Requirement set reporter path
string

Requirement set reporter path, returned as a string specifying the path to the derived report class
file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-113

getClassFolder
Class: systemcomposer.rptgen.report.RequirementSet
Package: systemcomposer.rptgen.report

Requirement set class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the requirement set class
definition file.

Output Arguments
path — Requirement set class definition file location
character array

Requirement set class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.RequirementSetFinder |
systemcomposer.rptgen.finder.RequirementSetResult |
systemcomposer.rptgen.report.RequirementSet | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-114

createTemplate
Class: systemcomposer.rptgen.report.Stereotype
Package: systemcomposer.rptgen.report

Create stereotype template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default stereotype
template specified by type at the location specified by templatePath. Use the copied template as a
starting point to design a custom stereotype template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | getReporter |
customizeReporter | getClassFolder

 createTemplate

5-115

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-116

customizeReporter
Class: systemcomposer.rptgen.report.Stereotype
Package: systemcomposer.rptgen.report

Create custom stereotype reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a stereotype class definition file
that is a subclass of the systemcomposer.rptgen.report.Stereotype class. The file is created
at the specified classpath location. The customizeReporter method also copies the default
stereotype templates to the <classpath>/resources/template folder. Use the new class
definition file as a starting point to design a custom stereotype class for your report.

Input Arguments
classpath — Location of custom stereotype class
current working folder (default) | string | character array

Location of custom stereotype class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Stereotype reporter path
string

Stereotype reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | getReporter |
createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-117

getClassFolder
Class: systemcomposer.rptgen.report.Stereotype
Package: systemcomposer.rptgen.report

Stereotype class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the stereotype class definition
file.

Output Arguments
path — Stereotype class definition file location
character array

Stereotype class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.StereotypeFinder |
systemcomposer.rptgen.finder.StereotypeResult |
systemcomposer.rptgen.report.Stereotype | find | hasNext | next | getReporter |
createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-118

createTemplate
Class: systemcomposer.rptgen.report.View
Package: systemcomposer.rptgen.report

Create view template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default view template
specified by type at the location specified by templatePath. Use the copied template as a starting
point to design a custom view template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | next | getReporter | customizeReporter | getClassFolder

Topics
“System Composer Report Generation for System Architectures”

 createTemplate

5-119

“System Composer Report Generation for Software Architectures”

5 Methods

5-120

customizeReporter
Class: systemcomposer.rptgen.report.View
Package: systemcomposer.rptgen.report

Create custom view reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a view class definition file that is a
subclass of the systemcomposer.rptgen.report.View class. The file is created at the specified
classpath location. The customizeReporter method also copies the default view templates to the
<classpath>/resources/template folder. Use the new class definition file as a starting point to
design a custom view class for your report.

Input Arguments
classpath — Location of custom view class
current working folder (default) | string | character array

Location of custom view class, specified as a string or character array. The classpath argument also
supports specifying a folder with @ before the class name.

Output Arguments
reporter — View reporter path
string

View reporter path, returned as a string specifying the path to the derived report class file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | next | getReporter | createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-121

getClassFolder
Class: systemcomposer.rptgen.report.View
Package: systemcomposer.rptgen.report

View class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the view class definition file.

Output Arguments
path — View class definition file location
character array

View class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.finder.ViewFinder |
systemcomposer.rptgen.finder.ViewResult | systemcomposer.rptgen.report.View |
find | hasNext | next | getReporter | createTemplate | customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-122

createTemplate
Class: systemcomposer.rptgen.report.SequenceDiagram
Package: systemcomposer.rptgen.report

Create sequence diagram template

Syntax
template = createTemplate(templatePath,type)

Description
template = createTemplate(templatePath,type) creates a copy of the default sequence
diagram template specified by type at the location specified by templatePath. Use the copied
template as a starting point to design a custom sequence diagram template for your report.

Input Arguments
templatePath — Path and file name of new template
character vector | string scalar

Path and file name of the new template, specified as a character vector or string scalar.

type — Type of template
"html" | "html-file" | "docx" | "pdf"

Type of template, specified as "html", "html-file", "docx", or "pdf".

Output Arguments
template — Path and file name of template copy
string scalar

Path and file name of the template copy, returned as a string scalar. The specified template type
determines the file name extension of the template. For example, if the type argument is 'pdf', the
file name extension is .pdftx.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.SequenceDiagram | customizeReporter |
getClassFolder

Topics
“System Composer Report Generation for System Architectures”

 createTemplate

5-123

“System Composer Report Generation for Software Architectures”

5 Methods

5-124

customizeReporter
Class: systemcomposer.rptgen.report.SequenceDiagram
Package: systemcomposer.rptgen.report

Create custom sequence diagram reporter class

Syntax
reporter = customizeReporter(classpath,type)

Description
reporter = customizeReporter(classpath,type) creates a sequence diagram class definition
file that is a subclass of the systemcomposer.rptgen.report.SequenceDiagram class. The file
is created at the specified classpath location. The customizeReporter method also copies the
default sequence diagram templates to the <classpath>/resources/template folder. Use the
new class definition file as a starting point to design a custom sequence diagram class for your
report.

Input Arguments
classpath — Location of custom sequence diagram class
current working folder (default) | string | character array

Location of custom sequence diagram class, specified as a string or character array. The classpath
argument also supports specifying a folder with @ before the class name.

Output Arguments
reporter — Sequence diagram reporter path
string

Sequence diagram reporter path, returned as a string specifying the path to the derived report class
file.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.SequenceDiagram | createTemplate | getClassFolder

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

 customizeReporter

5-125

getClassFolder
Class: systemcomposer.rptgen.report.SequenceDiagram
Package: systemcomposer.rptgen.report

Sequence diagram class definition file location

Syntax
path = getClassFolder

Description
path = getClassFolder returns the path of the folder that contains the sequence diagram class
definition file.

Output Arguments
path — Sequence diagram class definition file location
character array

Sequence diagram class definition file location, returned as a character array.

Version History
Introduced in R2022b

See Also
systemcomposer.rptgen.report.SequenceDiagram | createTemplate |
customizeReporter

Topics
“System Composer Report Generation for System Architectures”
“System Composer Report Generation for Software Architectures”

5 Methods

5-126

Tools and Apps

6

Allocation Editor
Create and manage model-to-model allocations

Description
Use the Allocation Editor in System Composer to establish traceable and directed relationships
between architectural elements. Allocate components, ports, and connectors in a source model to
architectural elements in a target model.

You can use allocations to establish relationships from software components to hardware components
and to indicate deployment strategies. Allocate different instances of components, ports, and
connectors and use allocations to perform various analyses, for example, resource-based allocation
analysis.

Open the Allocation Editor
• System Composer toolstrip: Navigate to Modeling > Allocation Editor.
• MATLAB Command Window: Enter systemcomposer.allocation.editor.

6 Tools and Apps

6-2

Examples
• “Create and Manage Allocations Interactively”
• “Create and Manage Allocations Programmatically”
• “Allocate Architectures in Tire Pressure Monitoring System”
• “Systems Engineering Approach for SoC Applications”

Parameters
New Allocation Set — Create new allocation set
button

Create a new allocation set saved as an MLDATX file. Within the allocation set, add allocation
scenarios.

Add Scenario — Add allocation scenario
button

Add an allocation scenario in the selected allocation set. Within the allocation scenario, allocate
elements between two architecture models.

Synchronize — Synchronize changes of models in allocation set
button

This button synchronizes any changes that have been made in the source or target models of the
allocation set. To synchronize changes programmatically, see synchronizeChanges.

Filters — Row filter and column filter
button

Choose a row filter and a column filter. Filter all allocation scenarios by a combination of the
following options:

• Port
• Connector
• Component
• Allocated
• Un-Allocated

You can also filter by one or more stereotypes.

Select Clear All Filters to clear every filter, Clear Row Filters to clear row filters, or Clear
Column Filters to clear column filters.

Programmatic Use
systemcomposer.allocation.editor opens the Allocation Editor from the MATLAB Command
Window.

 Allocation Editor

6-3

More About
Allocation

An allocation establishes a directed relationship from architectural elements — components, ports,
and connectors — in one model to architectural elements in another model.

Resource-based allocation allows you to allocate functional architectural elements to logical
architectural elements and logical architectural elements to physical architectural elements.

Allocation Scenario

An allocation scenario contains a set of allocations between a source and a target model.

Allocate between model elements in an allocation scenario. The default allocation scenario is called
Scenario 1.

Allocation Set

An allocation set consists of one or more allocation scenarios that describe various allocations
between a source and a target model.

Create an allocation set with allocation scenarios in the Allocation Editor. Allocation sets are saved
as MLDATX files.

Version History
Introduced in R2020b

See Also
systemcomposer.allocation.AllocationScenario |
systemcomposer.allocation.AllocationSet | editor | getScenario | allocate |
synchronizeChanges

Topics
“Create and Manage Allocations Interactively”
“Create and Manage Allocations Programmatically”
“Allocate Architectures in Tire Pressure Monitoring System”
“Systems Engineering Approach for SoC Applications”

6 Tools and Apps

6-4

Analysis Viewer
View and edit analysis instance model and analyze using analysis function

Description
The Analysis Viewer shows an instantiated architecture.

The Analysis Viewer shows all elements in the first column. The other columns show properties for
all stereotypes chosen for the current instance. If a property is not part of a stereotype applied to an
element, that field is greyed out. You can use the Filter button to hide properties for certain
stereotypes. When you select an element, Instance Properties shows the stereotypes and property
values of the element. You can save an instance in a MAT-file and open it again in the Analysis
Viewer.

Open the Analysis Viewer
• System Composer toolstrip: Navigate to Modeling > Analysis Model > Analysis Viewer.
• In the Instantiate Architecture Model tool, select Instantiate.

Examples
• “Analyze Architecture”

 Analysis Viewer

6-5

• “Analysis Function Constructs”
• “Simple Roll-Up Analysis Using Robot System with Properties”
• “Define Stereotypes and Perform Analysis”
• “Calculate Endurance Using Quadcopter Architectural Design”
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering”

Parameters
New — Create new instance model
button

Create a new instance model using the Instantiate Architecture Model tool.

Open — Open instance model
button

Open a saved MAT file of an existing instance model.

Save — Save instance model
button

Save the current instance model as a MAT file.

Delete — Delete instance model
button

Delete the current instance model.

Analyze — Analyze architecture instance
button

Analyze the architecture instance using an analysis function.

Arguments — Analysis arguments
comma-separated values

Comma-separated values of optional arguments to the analysis function.

Iteration Order — Iteration type
Preorder | Postorder | TopDown | BottomUp

Iteration type to specify how to process instances while using the analysis function. Select one of
these options from the list:

• Pre-order — Start from the top level, move to a child component, and process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling, and then
move to parent.

6 Tools and Apps

6-6

• Bottom-up — Like post-order, but process all subcomponents at the same depth before moving to
their parents.

Update — Push changes from instance to model
button

Push the changes from the architecture instance to the architecture model.

Refresh — Pull changes to instance from model
button

Pull changes to the architecture instance from the architecture model.

Continuous — Whether continuous analysis is enabled when values change
off (default) | on

Select this check box to enable continuous analysis when values change.

Automatic — Whether instance automatically refreshes when composition changes
off (default) | on

Select this check box to automatically refresh the instance when the composition changes.

Overwrite — Whether to overwrite entire instance model from composition model
off (default) | on

Select this check box to overwrite the entire instance model from the composition model.

Programmatic Use
systemcomposer.analysis.loadInstance loads a saved architecture instance object from a
saved MAT-file that can be later opened in the Analysis Viewer.

More About
Analysis

Analysis is a method for quantitatively evaluating an architecture for certain characteristics. Static
analysis analyzes the structure of the system. Static analysis uses an analysis function and parametric
values of properties captured in the system model.

Use analyses to calculate overall reliability, mass roll-up, performance, or thermal characteristics of a
system, or to perform a SWaP analysis.

Analysis Function

An analysis function is a MATLAB function that computes values necessary to evaluate the
architecture using the properties of each element in the model instance.

Use an analysis function to calculate the result of an analysis.

 Analysis Viewer

6-7

Instance Model

An instance model is a collection of instances.

You can update an instance model with changes to a model, but the instance model will not update
with changes in active variants or model references. You can use an instance model, saved in a MAT
file, of a System Composer architecture model for analysis.

Instance

An instance is an occurrence of an architecture model element at a given point in time.

An instance freezes the active variant or model reference of the component in the instance model.

Version History
Introduced in R2019a

See Also
instantiate | iterate | lookup | save | update | refresh |
systemcomposer.analysis.loadInstance | systemcomposer.analysis.deleteInstance |
getValue | setValue | hasValue | isArchitecture | isComponent | isConnector | isPort

Topics
“Analyze Architecture”
“Analysis Function Constructs”
“Simple Roll-Up Analysis Using Robot System with Properties”
“Define Stereotypes and Perform Analysis”
“Calculate Endurance Using Quadcopter Architectural Design”
“Design Insulin Infusion Pump Using Model-Based Systems Engineering”

6 Tools and Apps

6-8

Architecture Views Gallery
Create and manage architecture views and sequence diagrams

Description
The Architecture Views Gallery allows you to create filtered and freeform architecture views and
author sequence diagrams.

Use the View Configurations options to specify component and port filters for views, and to specify
grouping criteria. Click and drag components from the Model Components browser to specify the
contents of a freeform view. Select views from the View Browser and use the Component
Properties options to specify a name, color, and description for a view.

Switch between these types of view diagrams:

• Component Diagram — Display components, ports, and connectors based on how the model is
structured.

• Component Hierarchy — Display components in tree form with parents above children. In a
component hierarchy view, each referenced model is represented as many times as it is used.

• Architecture Hierarchy — Display unique component architecture types and their relationships
using composition connections. In an architecture hierarchy view, each referenced model is
represented only once.

• Class Diagram — Display unique architecture types of the software components optionally with
software methods and properties, only available for software architecture models.

You can also link and edit requirements for views through the Architecture Views Gallery.

To create a new sequence diagram, click New > Sequence Diagram. Select existing sequence
diagrams from the View Browser and use the Sequence Diagram Properties options to specify a
name for the sequence diagram. To add a lifeline, click and drag from the Model Components
browser. Alternatively, select Component > Add Lifeline from the menu and click the down arrow
to select a component to be represented by the lifeline. Click and drag from the vertical dotted lines
coming down from one lifeline to another to author a message that represents a connection between
two ports. To confirm the consistency of the sequence diagram, click Check Consistency. Then,
either push changes to the architecture by clicking Create in Architecture, or pull changes in from
the architecture to the sequence diagram by clicking Repair.

 Architecture Views Gallery

6-9

Open the Architecture Views Gallery
• System Composer toolstrip: Navigate to Modeling > Architecture Views.
• System Composer toolstrip: Navigate to Modeling > Sequence Diagram.
• MATLAB Command Window: Enter openViews with a systemcomposer.arch.Model object as

the input argument.

Examples
• “Modeling System Architecture of Keyless Entry System”
• “Create Architectural Views Programmatically”
• “Create Architecture Views Interactively”
• “Display Component Hierarchy and Architecture Hierarchy Using Views”
• “Class Diagram View of Software Architectures”
• “Describe System Behavior Using Sequence Diagrams”
• “Simulate Sequence Diagrams for Traffic Light Example”

Parameters
New — Create new view or sequence diagram
button

Create a new view by default by clicking New, or click the drop-down arrow to choose New > View.
Create a new sequence diagram by selecting New > Sequence Diagram.

6 Tools and Apps

6-10

Save — Save views, sequence diagrams, and model
button

Save all views, sequence diagrams, and the architecture model.

Delete — Delete currently selected diagram
button

Delete the currently selected view or sequence diagram.

Run Query — Refresh currently selected view
button

Refresh the currently selected view with changes in the composition and rerun the corresponding
filter, if it exists.

Add — Add selected component to view
button

Add the selected component in the Model Components browser to the current view diagram.

If the view is a filtered view, a prompt appears to convert the filtered view to a freeform view.

Remove — Remove selected component from view
button

Remove a selected component in a view from the current view diagram.

If the view is a filtered view, a prompt appears to convert the filtered view to a freeform view.

Group — Group selected components in view
button

Group the selected components in a view.

Ungroup — Ungroup selected components in view
button

Ungroup the selected components in a view.

Pivot — Pivot to other diagrams in which selected component or lifeline appears
button

Pivot to other diagrams in which selected component or lifeline appears. Use the drop-down list to
select the view diagram or sequence diagram to which to pivot. For more information, see “Pivot
Between Lifelines and Components in Views Gallery”.

Focus — Focus on selected component
button

Focus on the selected component to make it the new root of the diagram in the view.

Display Depth — Modify number of levels of hierarchy to display
Deep (default) | Shallow

 Architecture Views Gallery

6-11

Modify the number of levels of hierarchy to display. Deep includes more levels and Shallow includes
fewer levels.

Export — Export to image
button

Export the currently selected diagram as an image. View diagrams can be saved as PDF files.
Sequence diagrams can be saved as PDF files or image files.

Add Lifeline — Insert new lifeline into sequence diagram
button

Create a new lifeline after the selected lifeline by default by clicking Add Lifeline, or click the drop-
down arrow to choose Add Lifeline > Insert After. Create a new lifeline before the selected lifeline
by selecting Add Lifeline > Insert Before. Create a new lifeline nested under the selected lifeline
by selecting Add Lifeline > Add Child.

Add Operand — Insert new operand into sequence diagram
button

Create a new operand after the selected operand by default by clicking Add Operand, or click the
drop-down arrow to choose Add Operand > Insert After. Create a new operand before the selected
operand by selecting Add Operand > Insert Before.

Check Consistency — Check whether elements in sequence diagram are consistent with
architecture model
button

Check that all the elements in the current sequence diagram are consistent with the architecture
model. If any of the elements in the sequence diagram are inconsistent, clicking Check Consistency
highlights those elements in yellow.

Architecture Element — Specify different associated element in architecture model for selected
elements in sequence diagram
component | port

Specify a different associated element in the architecture model for the selected elements in the
sequence diagram.

Create in Architecture — Create elements in architecture model
button

Create elements in the architecture model for each of the selected inconsistent elements in the
sequence diagram.

Repair — Update selected elements so sequence diagram is consistent with architecture model
button

Update the selected inconsistent elements in the sequence diagram so the sequence diagram is
consistent with the architecture model.

Run — Run simulation
button

6 Tools and Apps

6-12

Run model simulation and verify that the model simulation results match the interactions within the
sequence diagrams.

Pause — Pause simulation
button

Pause model simulation and sequence diagram simulation.

Stop — Stop simulation
button

Stop model simulation and sequence diagram simulation.

Continue — Continue simulation
button

Continue model simulation until the end and verify that the model simulation results match the
interactions within the sequence diagrams.

Next Message — Continue until next message is hit
button

Continue until next message is hit and verify that the model simulation results match the interactions
within the sequence diagrams.

Clear Results — Clear simulation results
button

Clear simulation results and remove green check marks or red warning marks on the sequence
diagram.

Programmatic Use
openViews(model) opens the Architecture Views Gallery from the MATLAB Command Window.

More About
View

A view shows a customizable subset of elements in a model. Views can be filtered based on
stereotypes or names of components, ports, and interfaces, along with the name, type, or units of an
interface element. Create views by adding elements manually. Views create a simplified way to work
with complex architectures by focusing on certain parts of the architectural design.

You can use different types of views to represent the system. Switch between a component diagram,
component hierarchy, or architecture hierarchy. For software architectures, you can switch to a class
diagram view.

Element Group

An element group is a grouping of components in a view.

Use element groups to programmatically populate a view.

 Architecture Views Gallery

6-13

Query

A query is a specification that describes certain constraints or criteria to be satisfied by model
elements.

Use queries to search elements with constraint criteria and to filter views.

Component Diagram

A component diagram represents a view with components, ports, and connectors based on how the
model is structured.

Component diagrams allow you to programmatically or manually add and remove components from
the view.

Hierarchy Diagram

You can visualize a hierarchy diagram as a view with components, ports, reference types, component
stereotypes, and stereotype properties.

There are two types of hierarchy diagrams:

• Component hierarchy diagrams display components in tree form with parents above children. In a
component hierarchy view, each referenced model is represented as many times as it is used.

• Architecture hierarchy diagrams display unique component architecture types and their
relationships using composition connections. In an architecture hierarchy view, each referenced
model is represented only once.

Class Diagram

A class diagram is a graphical representation of a static structural model that displays unique
architecture types of the software components optionally with software methods and properties.

Class diagrams capture one instance of each referenced model and show relationships between them.
Any component diagram view can be optionally represented as a class diagram for a software
architecture model.

Sequence Diagram

A sequence diagram represents the expected interaction between structural elements of an
architecture as a sequence of message exchanges.

Use sequence diagrams to describe how the parts of a system interact.

Lifeline

A lifeline is represented by a head and a timeline that proceeds down a vertical dotted line.

The head of a lifeline represents a component in an architecture model.

Message

A message sends information from one lifeline to another. Messages are specified with a message
label.

6 Tools and Apps

6-14

A message label has a trigger and a constraint. A trigger determines whether the message occurs. A
constraint determines whether the message is valid.

Annotation

An annotation describes the elements of a sequence diagram.

Use annotations to provide detailed explanations of elements or workflows captured by sequence
diagrams.

Fragment

A fragment indicates how a group of messages within it execute or interact.

A fragment is used to model complex sequences, such as alternatives, in a sequence diagram.

Operand

An operand is a region in a fragment. Fragments have one or more operands depending on the kind
of fragment. Operands can contain messages and additional fragments.

Each operand can include a constraint to specify whether the messages inside the operand execute.
You can express the precondition of an operand as a MATLAB Boolean expression using the input
signal of any lifeline.

Version History
Introduced in R2019b

See Also
Functions
find | lookup | createView | getView | openViews | deleteView

Objects
systemcomposer.query.Constraint | systemcomposer.view.View |
systemcomposer.view.ElementGroup

Topics
“Modeling System Architecture of Keyless Entry System”
“Create Architectural Views Programmatically”
“Create Architecture Views Interactively”
“Display Component Hierarchy and Architecture Hierarchy Using Views”
“Class Diagram View of Software Architectures”
“Describe System Behavior Using Sequence Diagrams”
“Simulate Sequence Diagrams for Traffic Light Example”

 Architecture Views Gallery

6-15

Comparison Tool
View differences between two architecture models

Description
The Comparison Tool in System Composer shows differences between two architecture models.

The tool shows differences for these types of architectural data:

• Model structural differences (components, ports, and connectors)
• Different types of supported components and ports
• Interfaces on model data dictionaries
• Owned port interfaces
• Applied stereotypes and property value changes on model elements
• Architecture views
• Parameters
• Simulink properties

Rows in the comparison report are highlighted according to the type of difference:

•
Insertion — Added elements to the right side that did not exist on the left side

•
Deletion — Removed elements that did exist on the left side but not on the right side

•
Modification — Changes to existing elements that exist on both the left and right sides

6 Tools and Apps

6-16

Open the Comparison Tool
• Open the Comparison Tool from the System Composer toolstrip.

1 Navigate to Modeling > Compare.
2 In the Select Files or Folders for Comparison dialog box, select the second file against which

to compare.
3 Set the comparison type as System Composer Model Comparison.
4 Click Compare.

 Comparison Tool

6-17

• Open the Comparison Tool from the MATLAB® Current Folder browser by selecting one
architecture model.

1 In the MATLAB® Current Folder browser, right-click an architecture model.
2 Select Compare Against and then Choose.
3 In the Select Files or Folders for Comparison dialog box, select the second file against which

to compare.
4 Set the comparison type as System Composer Model Comparison.
5 Click Compare.

• Open the Comparison Tool from the MATLAB® Current Folder browser by selecting two
architecture models.

1 In the MATLAB® Current Folder browser, select two architecture models.
2 Right-click and select Compare Selected Files/Folders.

Examples
• “Compare Model Differences Using System Composer Comparison Tool”
• “Compose Architectures Visually”
• “Define Port Interfaces Between Components”
• “Define Profiles and Stereotypes”
• “Create Architecture Views Interactively”
• “Implement Component Behavior Using Simulink”

Parameters
Swap Sides — Switch left and right comparison models
button

Swap sides of the two models being compared on the comparison report.

Refresh — Pull changes from architecture models to comparison report
button

6 Tools and Apps

6-18

When the architecture models are out of sync, pull in the changes to the comparison report. You must
save both architecture models first before clicking Refresh.

Highlight Now — Highlight currently selected report node
button

When Always Highlight is turned off, you can click Highlight Now to highlight the currently
selected comparison report node in the architecture models.

Always Highlight — Whether to always highlight differences in models
on (default) | off

By default, the two models being compared display to the right of the comparison report, with the
model corresponding to the left side of the report on top and the model corresponding to the right
side appearing below. Turn Always Highlight off to use the Highlight Now button and control
highlighting in the models.

Hide Graphical Changes — Whether to hide graphical changes from comparison models
on (default) | off

Access this check box from the Filter menu. When selected, graphical changes such as component
positioning and resizing are ignored from the comparison report.

Programmatic Use
visdiff("scMobileRobot.slx","scMobileRobotEdited.slx") opens the Comparison Tool
from the MATLAB Command Window.

Version History
Introduced in R2022a

See Also
visdiff

Topics
“Compare Model Differences Using System Composer Comparison Tool”
“Compose Architectures Visually”
“Define Port Interfaces Between Components”
“Define Profiles and Stereotypes”
“Create Architecture Views Interactively”
“Implement Component Behavior Using Simulink”

 Comparison Tool

6-19

Functions Editor
Visualize and author component functions in software architectures

Description
The Functions Editor allows you to author functions in the architecture level for inline components.
You can then implement Simulink behaviors for your authored functions. For reference components,
the functions are automatically created from the referenced behavior Simulink models.

Use the Functions Editor to:

• Author and visualize functions.

• Add and delete functions.
• Change the execution order of the functions.
• Change the name of a function.
• Change the period of a function.

• Implement behaviors for functions.
• Add custom properties to functions using stereotypes.

Open the Functions Editor
• System Composer toolstrip: Navigate to Modeling > Functions Editor.

Examples
• “Authoring Functions for Software Components of an Adaptive Cruise Control”
• “Author and Extend Functions for Software Architectures”
• “Define Profiles and Stereotypes”

6 Tools and Apps

6-20

• “Use Property Inspector in System Composer”

Parameters
Add function — Add function to software component
button

Add a function to a software component by clicking .

Remove function — Remove function from software component
button

Remove a function from a software component by clicking .

Increase execution order — Increase execution order of function
button

Increase the execution order of a function by clicking .

This option is only available if Order functions by dependency is unchecked.

Decrease execution order — Decrease execution order of function
button

Decrease the execution order of a function by clicking .

This option is only available if Order functions by dependency is unchecked.

Update diagram — Update diagram to refresh functions
button

Update the software architecture diagram to refresh the functions in the Functions Editor by

clicking .

Order functions by dependency — Whether to order functions by dependency
off (default) | on

Select this check box to order functions in the Functions Editor by dependency.

You can order functions automatically based on their data dependencies. This functionality is
available for functions from behavior models. To enable automatic sorting, select the Order
functions by dependency check box or enable OrderFunctionsByDependency on the
architecture model.

Programmatic Use
Use the addFunction function to author functions. Use the createSimulinkBehavior function to
create new Simulink rate-based or export-function behaviors and link the software component to the
new model.

 Functions Editor

6-21

More About
Software Architecture

A software architecture is a specialization of an architecture for software-based systems, including
the description of software compositions, component functions, and their scheduling.

Use software architectures in System Composer to author software architecture models composed of
software components, ports, and interfaces. Design your software architecture model, define the
execution order of your component functions, simulate your design in the architecture level, and
generate code.

Software Component

A software component is a specialization of a component for software entities, including its functions
(entry points) and interfaces.

Implement a Simulink export-function, rate-based, or JMAAB model as a software component,
simulate the software architecture model, and generate code.

Software Composition

A software composition is a diagram of software components and connectors that represents a
composite software entity, such as a module or application.

Encapsulate functionality by aggregating or nesting multiple software components or compositions.

Function

A function is an entry point that can be defined in a software component.

You can apply stereotypes to functions in software architectures, edit sample times, and specify the
function period using the Functions Editor.

Service Interface

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements.

Once you have defined a service interface in the Interface Editor, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

Function Element

A function element describes the attributes of a function in a client-server interface.

Edit the function prototype on a function element to change the number and names of inputs and
outputs of the function. Edit function element properties as you would edit other interface element
properties. Function argument types can include built-in types as well as bus objects. You can specify
function elements to support:

• Synchronous execution — When the client calls the server, the function runs immediately and
returns the output arguments to the client.

6 Tools and Apps

6-22

• Asynchronous execution — When the client makes a request to call the server, the function is
executed asynchronously based on the priority order defined in the Functions Editor and
Schedule Editor and returns the output arguments to the client.

Function Argument

A function argument describes the attributes of an input or output argument in a function element.

You can set the properties of a function argument in the Interface Editor just as you would any
value type: Type, Dimensions, Units, Complexity, Minimum, Maximum, and Description.

Version History
Introduced in R2021b

See Also
systemcomposer.arch.Function | systemcomposer.interface.ServiceInterface |
systemcomposer.interface.FunctionElement |
systemcomposer.interface.FunctionArgument | addFunction | decreaseExecutionOrder
| increaseExecutionOrder | addServiceInterface | setFunctionPrototype |
getFunctionArgument

Topics
“Authoring Functions for Software Components of an Adaptive Cruise Control”
“Author and Extend Functions for Software Architectures”
“Define Profiles and Stereotypes”
“Use Property Inspector in System Composer”

 Functions Editor

6-23

Instantiate Architecture Model
Create an instance of the architecture model that you can use for analysis

Description
Instantiate Architecture Model creates an instance of an architecture model for analysis.

The Select Stereotypes tree lists the stereotypes of all profiles that have been loaded in the current
session and allows you to select those whose properties should be available in the instance model.
You can browse for an analysis function, create a new analysis function, or skip analysis at this point.
If the analysis function requires inputs other than elements in the model, such as an exchange rate to
compute cost, enter it in Function arguments. Select a mode for iterating through model elements,
for example, Bottom-up to move from the leaves of the tree to the root. Strict Mode ensures
elements in the instantiated model get properties only if the corresponding element in the
composition model has the stereotype applied.

Click Instantiate to open the Analysis Viewer.

6 Tools and Apps

6-24

Open the Instantiate Architecture Model
• System Composer toolstrip: Navigate to Modeling > Analysis Model.

Examples
• “Analyze Architecture”
• “Analysis Function Constructs”
• “Simple Roll-Up Analysis Using Robot System with Properties”
• “Define Stereotypes and Perform Analysis”
• “Calculate Endurance Using Quadcopter Architectural Design”
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering”

 Instantiate Architecture Model

6-25

Parameters
Analysis Function — Analysis function
M-file

Analysis function, specified as the MATLAB function handle to be executed when analysis is run. For
more information, see “Analysis Function Constructs”.

Function arguments — Analysis arguments
comma-separated values

Comma-separated values of optional arguments to the analysis function.

Iteration Order — Iteration type
Pre-order | Post-order | Top-Down | Bottom-up

Iteration type to specify how to process instances while using the analysis function. Select one of
these options from the list:

• Pre-order — Start from the top level, move to a child component, and process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling, and then
move to parent.

• Bottom-up — Like post-order, but process all subcomponents at the same depth before moving to
their parents.

Normalize Units — Whether to normalize value based on units
off (default) | on

Whether to normalize value based on units, if any, specified in property definition upon instantiation.

Strict Mode — Condition for instances getting properties
off (default) | on

Condition for instances getting properties only if the corresponding element in the composition model
has the stereotype applied.

Programmatic Use
Use the instantiate function or the iterate function for programmatic analyses.

More About
Analysis

Analysis is a method for quantitatively evaluating an architecture for certain characteristics. Static
analysis analyzes the structure of the system. Static analysis uses an analysis function and parametric
values of properties captured in the system model.

6 Tools and Apps

6-26

Use analyses to calculate overall reliability, mass roll-up, performance, or thermal characteristics of a
system, or to perform a SWaP analysis.

Analysis Function

An analysis function is a MATLAB function that computes values necessary to evaluate the
architecture using the properties of each element in the model instance.

Use an analysis function to calculate the result of an analysis.

Instance Model

An instance model is a collection of instances.

You can update an instance model with changes to a model, but the instance model will not update
with changes in active variants or model references. You can use an instance model, saved in a MAT
file, of a System Composer architecture model for analysis.

Instance

An instance is an occurrence of an architecture model element at a given point in time.

An instance freezes the active variant or model reference of the component in the instance model.

Version History
Introduced in R2019a

See Also
instantiate | iterate | lookup | save | update | refresh |
systemcomposer.analysis.loadInstance | systemcomposer.analysis.deleteInstance |
getValue | setValue | hasValue | isArchitecture | isComponent | isConnector | isPort

Topics
“Analyze Architecture”
“Analysis Function Constructs”
“Simple Roll-Up Analysis Using Robot System with Properties”
“Define Stereotypes and Perform Analysis”
“Calculate Endurance Using Quadcopter Architectural Design”
“Design Insulin Infusion Pump Using Model-Based Systems Engineering”

 Instantiate Architecture Model

6-27

Interface Editor
Create and author interfaces in local and shared interface data dictionaries

Description
The Interface Editor allows you to define interfaces in System Composer that might contain
attributes. In System Composer architecture models, interfaces are necessary to specify information
that flows through ports between components.

Types of interfaces include:

• Composite Data Interface — Represents the information that is shared through a connector and
enters or exits a component through a port, A data interface can be composite, meaning that it
can include data elements that describe the properties of an interface signal.

• Value Type — Can be used as a port interface to define the atomic piece of data that flows
through that port and has a top-level type, dimension, unit, complexity, minimum, maximum, and
description. You can also assign the type of data elements in data interfaces to value types.

• Physical Interface — Defines the kind of information that flows through a physical port, The
same interface can be assigned to multiple ports. A physical interface bundles physical elements
to describe a physical model using at least one physical domain

• Service Interface — Defines service elements with function arguments for a client-server port.
This interface is only available for software architectures.

You can save a locally defined model data dictionary as a shared data dictionary to reuse interface
definitions across architecture models. Apply a profile to your interface dictionary to assign
stereotypes to interfaces. These interfaces typed by a stereotype now contain metadata, and you can
set the property values for each interface independently.

You can toggle the view for the Interface Editor depending on the locality of the interfaces:

• Dictionary View — Shows shared interfaces across the model that can be reused on multiple
ports

• Port Interface View — Shows owned interfaces locally defined on a single port

6 Tools and Apps

6-28

Open the Interface Editor
• System Composer toolstrip: Navigate to Modeling > Interface Editor.

Examples
• “Modeling System Architecture of Small UAV”
• “Define Port Interfaces Between Components”
• “Specify Physical Interfaces on Ports”
• “Author Service Interfaces for Client-Server Communication”
• “Use Property Inspector in System Composer”

Parameters
Add data interface — Add new data interface
button

Add a new data interface by clicking or select one of these options from the drop-down list:

• Composite Data Interface — Represents the information that is shared through a connector and
enters or exits a component through a port, A data interface can be composite, meaning that it
can include data elements that describe the properties of an interface signal.

• Value Type — Can be used as a port interface to define the atomic piece of data that flows
through that port and has a top-level type, dimension, unit, complexity, minimum, maximum, and
description. You can also assign the type of data elements in data interfaces to value types.

• Physical Interface — Defines the kind of information that flows through a physical port, The
same interface can be assigned to multiple ports. A physical interface bundles physical elements
to describe a physical model using at least one physical domain

 Interface Editor

6-29

• Service Interface — Defines service elements with function arguments for a client-server port.
This interface is only available for software architectures.

Add element to selected interface — Add new element
button

Add a new element by clicking . If the selected interface is one of these, the new element added is
one of these types:

• Composite Data Interface — Data Element
• Physical Interface — Physical Element
• Service Interface — Service Element — Function Arguments, which are only available for

software architectures

Delete selected interface or element — Delete interface or element
button

Delete the selected interface or element in the Interface Editor.

Import interfaces — Import interface definitions
button

Import interfaces from these locations:

• Base Workspace
• MAT-file

Save interfaces and/or link dictionary — Save interfaces or link dictionary
button

Save interfaces on the current dictionary or link to an existing dictionary. Select a specific option
from the drop-down list:

• Save dictionary
• Save all dictionaries
• Save to new dictionary
• Link existing dictionary

Import profile — Choose profile to import into data dictionary
button

Choose a profile XML file to import into the currently selected data dictionary.

Show Hide Columns — Show and hide columns in editor
button

Show and hide columns on the Interface Editor by checking the corresponding boxes:

• Type
• Dimensions
• Units

6 Tools and Apps

6-30

• Complexity
• Minimum
• Maximum
• Description
• Asynchronous, available only for software architectures

View — Choose editor view
Dictionary View (default) | Port Interface View

Choose a view for the Interface Editor to display interfaces:

• Dictionary View — Shows shared interfaces across the model that can be reused on multiple
ports

• Port Interface View — Shows owned interfaces locally defined on a single port

More About
Interface Data Dictionary

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. You can reuse interface dictionaries between models that need to use a given set
of interfaces, elements, and value types. Linked data dictionaries are stored in separate SLDD files.

Data Interface

A data interface defines the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage data interfaces and data
elements and store them in an interface data dictionary for reuse between models.

Data Element

A data element describes a portion of an interface, such as a communication message, a calculated or
measured parameter, or other decomposition of that interface.

Data interfaces are decomposed into data elements:

• Pins or wires in a connector or harness.
• Messages transmitted across a bus.
• Data structures shared between components.

Value Type

A value type can be used as a port interface to define the atomic piece of data that flows through that
port and has a top-level type, dimension, unit, complexity, minimum, maximum, and description.

 Interface Editor

6-31

You can also assign the type of data elements in data interfaces to value types. Add value types to
data dictionaries using the Interface Editor so that you can reuse the value types as interfaces or
data elements.

Owned Interface

An owned interface is an interface that is local to a specific port and not shared in a data dictionary
or the model dictionary.

Create an owned interface to represent a value type or data interface that is local to a port.

Adapter

An adapter helps connect two components with incompatible port interfaces by mapping between the
two interfaces. An adapter can act as a unit delay or rate transition. You can also use an adapter for
bus creation. Use the Adapter block to implement an adapter.

With an adapter, you can perform functions on the “Interface Adapter” dialog box:

• Create and edit mappings between input and output interfaces.
• Apply an interface conversion UnitDelay to break an algebraic loop.
• Apply an interface conversion RateTransition to reconcile different sample time rates for

reference models.
• Apply an interface conversion Merge to merges two or more message or signal lines.
• When output interfaces are undefined, you can use input interfaces in bus creation mode to author

owned output interfaces.

Physical Interface

A physical interface defines the kind of information that flows through a physical port. The same
interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to
a Simulink.ConnectionBus object that specifies any number of Simulink.ConnectionElement
objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one
physical domain.

Physical Element

A physical element describes the decomposition of a physical interface. A physical element is
equivalent to a Simulink.ConnectionElement object.

Define the Type of a physical element as a physical domain to enable use of that domain in a physical
model.

Function

A function is an entry point that can be defined in a software component.

You can apply stereotypes to functions in software architectures, edit sample times, and specify the
function period using the Functions Editor.

6 Tools and Apps

6-32

Service Interface

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements.

Once you have defined a service interface in the Interface Editor, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

Function Element

A function element describes the attributes of a function in a client-server interface.

Edit the function prototype on a function element to change the number and names of inputs and
outputs of the function. Edit function element properties as you would edit other interface element
properties. Function argument types can include built-in types as well as bus objects. You can specify
function elements to support:

• Synchronous execution — When the client calls the server, the function runs immediately and
returns the output arguments to the client.

• Asynchronous execution — When the client makes a request to call the server, the function is
executed asynchronously based on the priority order defined in the Functions Editor and
Schedule Editor and returns the output arguments to the client.

Function Argument

A function argument describes the attributes of an input or output argument in a function element.

You can set the properties of a function argument in the Interface Editor just as you would any
value type: Type, Dimensions, Units, Complexity, Minimum, Maximum, and Description.

Version History
Introduced in R2019a

See Also
addInterface | removeInterface | addElement | removeElement | connect | setInterface |
addValueType | connect | getDestinationElement | getSourceElement | createInterface
| createOwnedType | Adapter | createDictionary | openDictionary | saveToDictionary |
linkDictionary | unlinkDictionary | addReference | removeReference

Topics
“Modeling System Architecture of Small UAV”
“Define Port Interfaces Between Components”
“Specify Physical Interfaces on Ports”
“Author Service Interfaces for Client-Server Communication”
“Use Property Inspector in System Composer”

 Interface Editor

6-33

Manage Profiles
Link and unlink profiles and order stereotypes

Description
Use the Manage Profiles tool to import profiles into the current architecture model, or remove
profiles from the model that have already been imported. The imported profiles appear in a list by
name and the model or dictionary to which a profile is linked. To manage the priority order of the
stereotypes from all imported profiles, click Manage Stereotype Order. To define and edit profiles,
use the Profile Editor tool.

Open the Manage Profiles
• System Composer toolstrip: Navigate to Modeling > Profile Editor > Manage.

Examples
• “Change Stereotype Order Using Manage Profiles Tool”
• “Define Profiles and Stereotypes”
• “Use Stereotypes and Profiles”
• “Define Stereotypes and Perform Analysis”
• “Apply Stereotypes to Functions of Software Architectures”

6 Tools and Apps

6-34

Parameters
Import — Import profile into model
button

Import a profile into the current architecture model by navigating to the current directory and
choosing a profile with an .xml extension.

Remove — Remove profile from model or dictionary
button

Remove the selected profile on the list from the model or dictionary to which the profile is linked.

Manage Stereotype Order — Manage order of stereotypes for imported profiles
button

Manage the priority order of stereotypes for imported profiles so that when multiple profiles are
applied to a model element, the highest priority stereotype will display stereotype-based styling.

For more information, see “Change Stereotype Order Using Manage Profiles Tool”.

Note Connector styling is sourced from the highest-priority stereotype that defines style information.
Connector stereotypes have the highest priority, followed by port stereotypes and then interface
stereotypes. When two connectors with different styling merge, if the styling is incompatible, the
resulting connector is displayed in black.

Programmatic Use
model.applyProfile(profile) links a profile to the model.

model.removeProfile(profile) unlinks a profile from the model.

More About
Model

A System Composer model is the file that contains architectural information, including components,
ports, connectors, interfaces, and behaviors.

Perform operations on a model:

• Extract the root-level architecture contained in the model.
• Apply profiles.
• Link interface data dictionaries.
• Generate instances from model architecture.

A System Composer model is stored as an SLX file.

 Manage Profiles

6-35

Interface Data Dictionary

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. You can reuse interface dictionaries between models that need to use a given set
of interfaces, elements, and value types. Linked data dictionaries are stored in separate SLDD files.

Profile

A profile is a package of stereotypes that you can use to create a self-consistent domain of element
types.

Author profiles and apply profiles to a model using the Profile Editor. You can store stereotypes for a
project in one or several profiles. When you save profiles, they are stored in XML files.

Stereotype

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata.

Apply stereotypes to model elements such as root-level architecture, component architecture,
connectors, ports, data interfaces, value types, functions, requirements, and links. Functions only
apply to software architectures. You must have a Requirements Toolbox license to apply stereotypes
to requirements and links. A model element can have multiple stereotypes. Stereotypes provide
model elements with a common set of property fields, such as mass, cost, and power.

Property

A property is a field in a stereotype. You can specify property values for each element to which the
stereotype is applied.

Use properties to store quantitative characteristics, such as weight or speed, that are associated with
a model element. Properties can also be descriptive or represent a status. You can view and edit the
properties of each element in the architecture model using the Property Inspector.

Component

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts. Transfer information between components with:

• Port interfaces using the Interface Editor
• Parameters using the Parameter Editor

Port

A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

6 Tools and Apps

6-36

There are different types of ports:

• Component ports are interaction points on the component to other components.
• Architecture ports are ports on the boundary of the system, whether the boundary is within a

component or the overall architecture model.

Connector

Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an
interface on a port to define how the components interact.

Version History
Introduced in R2019a

See Also
Tools
Profile Editor

Objects
systemcomposer.profile.Profile | systemcomposer.profile.Stereotype |
systemcomposer.profile.Property

Functions
systemcomposer.profile.Profile.createProfile | addStereotype | addProperty |
batchApplyStereotype | applyStereotype | applyProfile | removeProfile

Topics
“Change Stereotype Order Using Manage Profiles Tool”
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”
“Define Stereotypes and Perform Analysis”
“Apply Stereotypes to Functions of Software Architectures”

 Manage Profiles

6-37

Parameter Editor
Add, edit, and promote parameters for architectures and components

Description
The Parameter Editor allows you to add intrinsic or operational parameters for architectural design.

Use the Parameter Editor to:

• Add and edit parameters for components in an architecture. Edit the default properties of the
parameter: Name, Value, Unit, Type, Dimensions, Min, and Max

• Add and edit parameters to the root architecture of a model or to the architecture of a group of
components.

• Promote parameters from components contained in the model to a top-level architecture.

6 Tools and Apps

6-38

Open the Parameter Editor
• System Composer: From the Property Inspector, use the Parameters list to open the

Parameter Editor using the Open Editor option.

Examples
• “Author Parameters in System Composer Using Parameter Editor”
• “Use Parameters to Store Instance Values with Components”
• “Access Model Arguments as Parameters on Reference Components”
• “Use Property Inspector in System Composer”

Parameters
Add Parameter — Add parameters to current architecture
button

Add parameters to the current architecture. The architecture can be the root architecture of the
model or the architecture of the currently selected component.

Promote Parameters — Open parameter promotion
button

Open the parameter promotion user interface. If there are components with parameters in the
currently selected architecture, you can promote these parameters by selecting each check box and
clicking Promote.

Highlight Source — Highlight source of parameter
button

Highlight the source of the parameter in the model canvas and bring it into the front view. To leave
this spotlight view, click the close button at the top right of the model canvas.

More About
Parameter

A parameter is an instance-specific value of a value type.

Parameters are available for inlined architectures and components. Parameters are also available for
components linked to model references or architecture references that specify model arguments. You
can specify independent values for a parameter on each component.

Component

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

 Parameter Editor

6-39

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts. Transfer information between components with:

• Port interfaces using the Interface Editor
• Parameters using the Parameter Editor

Architecture

A System Composer architecture represents a system of components and how they interface with
each other structurally and behaviorally.

Different types of architectures describe different aspects of systems. You can use views to visualize a
subset of components in an architecture. You can define parameters on the architecture level using
the Parameter Editor.

Version History
Introduced in R2022b

See Also
systemcomposer.arch.Parameter | addParameter | getParameter |
getParameterPromotedFrom | resetToDefault | getEvaluatedParameterValue |
getParameterNames | setParameterValue | getParameterValue | setUnit |
resetParameterToDefault

Topics
“Author Parameters in System Composer Using Parameter Editor”
“Use Parameters to Store Instance Values with Components”
“Access Model Arguments as Parameters on Reference Components”
“Use Property Inspector in System Composer”

6 Tools and Apps

6-40

Profile Editor
Create and manage profiles with stereotypes and properties

Description
The Profile Editor allows you to define a profile that contains stereotypes with properties. In System
Composer architecture models, stereotyping is necessary to define custom metadata on model
elements typed by the stereotype. In Requirements Toolbox, you can use stereotypes to define custom
requirement types and link types with custom properties.

• System Composer: Apply a profile to your model or interface data dictionary. Then, use
stereotypes in the model to type model elements such as components, connectors, ports,
interfaces, functions, requirement sets, and link sets. Functions only apply to software
architectures. You can define custom property values on each element using the stereotyped
template.

• Requirements Toolbox: Apply a profile to a requirement set or link set. Then use stereotypes by
setting the requirement type or link type to the stereotype and setting the stereotype properties to
your desired values.

 Profile Editor

6-41

Open the Profile Editor
System Composer

• System Composer toolstrip: In the Modeling tab, click Profile Editor.
• MATLAB Command Window: Enter systemcomposer.profile.editor.

Requirements Toolbox

•
Requirements Editor toolstrip: Click Profile Editor .

Examples
• “Define Stereotypes and Perform Analysis”
• “Define Profiles and Stereotypes”
• “Use Stereotypes and Profiles”
• “Apply Stereotypes to Functions of Software Architectures”
• “Use Property Inspector in System Composer”
• “Customize Requirements and Links by Using Stereotypes” (Requirements Toolbox)

Parameters
Filter profiles — Filter to show imported profiles
<all> (default) | model file name | dictionary file name | <refresh>

Filter imported profiles:

• <all> to show all imported profiles from all loaded models and dictionaries.
• A model name, such as model.slx, to show all imported profiles from specified architecture

model.
• An interface data dictionary, such as dictionary.sldd, to show all imported profiles from
specified interface data dictionary.

• <refresh> to refresh profiles from all loaded models and dictionaries.

Import into — Import selected profile
model file name | dictionary file name

Specify the name of a model or interface data dictionary to which to import the selected profile.

Stereotype applied to root on import — Root stereotype
<none> (default) | stereotype

Stereotype to apply to the root architecture after importing profile into a model. Choose from a list of
available stereotypes. The root architecture is at the system boundary of the top-level model that
separates the contents of the model from the environment.

Applies to — Element type to which stereotype can be applied
<all> (default) | Component | Port | Connector | Interface | Function | Requirement | Link

6 Tools and Apps

6-42

Element type to which the stereotype can be applied.

Base stereotype — Stereotype from which stereotype inherits properties
<none> (default) | stereotype

Stereotype from which the stereotype inherits properties. Choose from a list of available stereotypes.

Abstract stereotype — Whether stereotype is abstract
off (default) | on

Select this check box to indicate an abstract stereotype. An abstract stereotype is a stereotype that is
not intended to be applied directly to a model element. You can use abstract stereotypes only as the
base stereotype for other stereotypes.

Show inherited properties — Whether to show properties inherited from base stereotype
off (default) | on

Select this check box to indicate whether to display read-only properties inherited from a base
stereotype.

Programmatic Use
systemcomposer.profile.editor opens the Profile Editor from the MATLAB Command Window.

More About
Model

A System Composer model is the file that contains architectural information, including components,
ports, connectors, interfaces, and behaviors.

Perform operations on a model:

• Extract the root-level architecture contained in the model.
• Apply profiles.
• Link interface data dictionaries.
• Generate instances from model architecture.

A System Composer model is stored as an SLX file.

Interface Data Dictionary

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. You can reuse interface dictionaries between models that need to use a given set
of interfaces, elements, and value types. Linked data dictionaries are stored in separate SLDD files.

 Profile Editor

6-43

Profile

A profile is a package of stereotypes that you can use to create a self-consistent domain of element
types.

Author profiles and apply profiles to a model using the Profile Editor. You can store stereotypes for a
project in one or several profiles. When you save profiles, they are stored in XML files.

Stereotype

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata.

Apply stereotypes to model elements such as root-level architecture, component architecture,
connectors, ports, data interfaces, value types, functions, requirements, and links. Functions only
apply to software architectures. You must have a Requirements Toolbox license to apply stereotypes
to requirements and links. A model element can have multiple stereotypes. Stereotypes provide
model elements with a common set of property fields, such as mass, cost, and power.

Property

A property is a field in a stereotype. You can specify property values for each element to which the
stereotype is applied.

Use properties to store quantitative characteristics, such as weight or speed, that are associated with
a model element. Properties can also be descriptive or represent a status. You can view and edit the
properties of each element in the architecture model using the Property Inspector.

Component

A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts. Transfer information between components with:

• Port interfaces using the Interface Editor
• Parameters using the Parameter Editor

Port

A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

There are different types of ports:

• Component ports are interaction points on the component to other components.
• Architecture ports are ports on the boundary of the system, whether the boundary is within a

component or the overall architecture model.

6 Tools and Apps

6-44

Connector

Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an
interface on a port to define how the components interact.

Data Interface

A data interface defines the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage data interfaces and data
elements and store them in an interface data dictionary for reuse between models.

Physical Interface

A physical interface defines the kind of information that flows through a physical port. The same
interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to
a Simulink.ConnectionBus object that specifies any number of Simulink.ConnectionElement
objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one
physical domain.

Service Interface

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements.

Once you have defined a service interface in the Interface Editor, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

Requirements

Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements.

To enhance traceability of requirements, link system, functional, customer, performance, or design
requirements to components and ports. Link requirements to each other to represent derived or
allocated requirements. Manage requirements from the Requirements Perspective on an architecture
model or through custom views. Assign test cases to requirements using the Test Manager for
verification and validation.

Requirement Link

A link is an object that relates two model-based design elements. A requirement link is a link where
the destination is a requirement. You can link requirements to components or ports.

 Profile Editor

6-45

View links using the Requirements Perspective in System Composer. Select a requirement in the
Requirements Browser to highlight the component or the port to which the requirement is assigned.
Links are stored externally as SLMX files.

Requirement Set

A requirement set is a collection of requirements. You can structure the requirements hierarchically
and link them to components or ports.

Use the Requirements Editor to edit and refine requirements in a requirement set. Requirement
sets are stored in SLREQX files. You can create a new requirement set and author requirements using
Requirements Toolbox, or import requirements from supported third-party tools.

Version History
Introduced in R2019a

See Also
Tools
Profile Editor

Objects
systemcomposer.profile.Profile | systemcomposer.profile.Stereotype |
systemcomposer.profile.Property

Functions
systemcomposer.profile.editor | systemcomposer.profile.Profile.createProfile |
addStereotype | addProperty

Topics
“Define Stereotypes and Perform Analysis”
“Define Profiles and Stereotypes”
“Use Stereotypes and Profiles”
“Apply Stereotypes to Functions of Software Architectures”
“Use Property Inspector in System Composer”
“Customize Requirements and Links by Using Stereotypes” (Requirements Toolbox)

6 Tools and Apps

6-46

Sequence Viewer
Visualize messages, events, states, transitions, and functions

Description
The Sequence Viewer visualizes message flow, function calls, and state transitions.

Use the Sequence Viewer to see the interchange of messages, events, function calls in Simulink
models, Simulink behavior models in System Composer and between Stateflow charts in Simulink
models.

In the Sequence Viewer window, you can view event data related to Stateflow chart execution and the
exchange of messages between Stateflow charts. The Sequence Viewer window shows messages as
they are created, sent, forwarded, received, and destroyed at different times during model execution.
The Sequence Viewer window also displays state activity, transitions, and function calls to Stateflow
graphical functions, Simulink functions, and MATLAB functions. For more information, see .

Note The Sequence Viewer does not display function calls generated by MATLAB Function blocks
and S-functions.

Open the Sequence Viewer
• Simulink Toolstrip: On the Simulation tab, in the Review Results section, click Sequence

Viewer.

 Sequence Viewer

6-47

Examples

Using the Sequence Viewer Tool

1 To activate logging events, in the Simulink Toolstrip, under the Simulation tab, in the Prepare
section, click Log Events.

2 Simulate your model.
3 To open the tool, in the Simulink Toolstrip, under the Simulation tab, in the Review Results

section, click Sequence Viewer.

• “Simulink Messages Overview”

Parameters
Time Precision for Variable Step — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision. Minimum and maximum precision are 1 and 16, respectively.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: SequenceViewerTimePrecision
Type: character vector
Values: '3' | scalar
Default: '3'

History — Maximum number of previous events to display
1000 (default) | scalar

Total number of events before the last event to display. Minimum and maximum number of events are
0 and 25000, respectively.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.

Programmatic Use
Block Parameter: SequenceViewerHistory
Type: character vector
Values: '1000' | scalar
Default: '1000'

6 Tools and Apps

6-48

Version History
Introduced in R2020b

Blocks

Topics
“Simulink Messages Overview”

 Sequence Viewer

6-49

	Blocks
	Adapter
	Component
	Reference Component
	Variant Component

	Objects
	systemcomposer.allocation.Allocation
	systemcomposer.allocation.AllocationScenario
	systemcomposer.allocation.AllocationSet
	systemcomposer.analysis.ArchitectureInstance
	systemcomposer.analysis.ComponentInstance
	systemcomposer.analysis.ConnectorInstance
	systemcomposer.analysis.Instance
	systemcomposer.analysis.PortInstance
	systemcomposer.arch.Architecture
	systemcomposer.arch.ArchitecturePort
	systemcomposer.arch.BaseComponent
	systemcomposer.arch.BaseConnector
	systemcomposer.arch.BasePort
	systemcomposer.arch.Component
	systemcomposer.arch.ComponentPort
	systemcomposer.arch.Connector
	systemcomposer.arch.Element
	systemcomposer.arch.Function
	systemcomposer.arch.Model
	systemcomposer.arch.Parameter
	systemcomposer.arch.PhysicalConnector
	systemcomposer.arch.VariantComponent
	systemcomposer.interface.DataElement
	systemcomposer.interface.DataInterface
	systemcomposer.interface.Dictionary
	systemcomposer.interface.FunctionArgument
	systemcomposer.interface.FunctionElement
	systemcomposer.interface.PhysicalDomain
	systemcomposer.interface.PhysicalElement
	systemcomposer.interface.PhysicalInterface
	systemcomposer.interface.ServiceInterface
	systemcomposer.interface.SignalElement
	systemcomposer.interface.SignalInterface
	systemcomposer.io.ModelBuilder
	systemcomposer.parameter.ParameterDefinition
	systemcomposer.profile.Profile
	systemcomposer.profile.Property
	systemcomposer.profile.Stereotype
	systemcomposer.query.Constraint
	systemcomposer.ValueType
	systemcomposer.view.BaseViewComponent
	systemcomposer.view.ComponentOccurrence
	systemcomposer.view.ElementGroup
	systemcomposer.view.View
	systemcomposer.view.ViewArchitecture
	systemcomposer.view.ViewComponent
	systemcomposer.view.ViewElement

	Classes
	systemcomposer.rptgen.finder.AllocationListFinder
	systemcomposer.rptgen.finder.AllocationListResult
	systemcomposer.rptgen.finder.AllocationSetFinder
	systemcomposer.rptgen.finder.AllocationSetResult
	systemcomposer.rptgen.finder.ComponentFinder
	systemcomposer.rptgen.finder.ComponentResult
	systemcomposer.rptgen.finder.ConnectorFinder
	systemcomposer.rptgen.finder.ConnectorResult
	systemcomposer.rptgen.finder.DictionaryFinder
	systemcomposer.rptgen.finder.DictionaryResult
	systemcomposer.rptgen.finder.FunctionFinder
	systemcomposer.rptgen.finder.FunctionResult
	systemcomposer.rptgen.finder.InterfaceFinder
	systemcomposer.rptgen.finder.InterfaceResult
	systemcomposer.rptgen.finder.ProfileFinder
	systemcomposer.rptgen.finder.ProfileResult
	systemcomposer.rptgen.finder.RequirementLinkFinder
	systemcomposer.rptgen.finder.RequirementLinkResult
	systemcomposer.rptgen.finder.RequirementSetFinder
	systemcomposer.rptgen.finder.RequirementSetResult
	systemcomposer.rptgen.finder.StereotypeFinder
	systemcomposer.rptgen.finder.StereotypeResult
	systemcomposer.rptgen.finder.ViewFinder
	systemcomposer.rptgen.finder.ViewResult
	systemcomposer.rptgen.report.AllocationList
	systemcomposer.rptgen.report.AllocationSet
	systemcomposer.rptgen.report.Component
	systemcomposer.rptgen.report.Connector
	systemcomposer.rptgen.report.DependencyGraph
	systemcomposer.rptgen.report.Function
	systemcomposer.rptgen.report.Interface
	systemcomposer.rptgen.report.Profile
	systemcomposer.rptgen.report.RequirementLink
	systemcomposer.rptgen.report.RequirementSet
	systemcomposer.rptgen.report.SequenceDiagram
	systemcomposer.rptgen.report.Stereotype
	systemcomposer.rptgen.report.View

	Functions
	addChoice
	addComponent
	addComponent
	addElement
	addElement
	addInterface
	addPhysicalInterface
	addFunction
	addParameter
	addPort
	addProperty
	addReference
	addServiceInterface
	addStereotype
	addValueType
	addVariantComponent
	allocate
	AnyComponent
	applyProfile
	applyStereotype
	batchApplyStereotype
	close
	close
	close
	systemcomposer.allocation.AllocationSet.closeAll
	systemcomposer.profile.Profile.closeAll
	connect
	systemcomposer.allocation.createAllocationSet
	createAnonymousInterface
	createArchitectureModel
	systemcomposer.createDictionary
	createInterface
	createOwnedType
	systemcomposer.createModel
	systemcomposer.profile.Profile.createProfile
	createScenario
	createSimulinkBehavior
	createStateflowChartBehavior
	createSubsystemBehavior
	createSubGroup
	createView
	createViewArchitecture
	createViewComponent
	deallocate
	decreaseExecutionOrder
	systemcomposer.analysis.deleteInstance
	deleteScenario
	deleteSubGroup
	deleteView
	destroy
	systemcomposer.allocation.editor
	systemcomposer.profile.editor
	systemcomposer.exportModel
	systemcomposer.exportToVersion
	systemcomposer.extractArchitectureFromSimulink
	find
	systemcomposer.profile.Stereotype.find
	systemcomposer.profile.Profile.find
	systemcomposer.allocation.AllocationSet.find
	findElementsOfType
	findElementsWithStereotype
	findElementsWithProperty
	findElementsWithInterface
	getActiveChoice
	getAllocatedFrom
	getAllocatedTo
	getAllocation
	getChoices
	getCondition
	getDefaultElementStereotype
	getDefaultStereotype
	getDestinationElement
	getElement
	getEvaluatedParameterValue
	getEvaluatedPropertyValue
	getFunctionArgument
	getInterface
	getInterfaceNames
	getParameter
	getParameterDefinition
	getParameterNames
	getParameterPromotedFrom
	getParameterValue
	getPort
	getProperty
	getPropertyValue
	getScenario
	getSourceElement
	getStereotype
	getStereotypeProperties
	getStereotypes
	getSubGroup
	getValue
	getQualifiedName
	getView
	HasConnector
	HasInterface
	HasInterfaceElement
	HasPort
	hasProperty
	hasStereotype
	HasStereotype
	hasValue
	systemcomposer.importModel
	increaseExecutionOrder
	inlineComponent
	instantiate
	isArchitecture
	isComponent
	isConnector
	IsInRange
	isPort
	isProtected
	isReference
	IsStereotypeDerivedFrom
	iterate
	linkDictionary
	linkToModel
	systemcomposer.allocation.load
	systemcomposer.profile.Profile.load
	systemcomposer.analysis.loadInstance
	systemcomposer.loadModel
	systemcomposer.loadProfile
	lookup
	makeOwnedInterfaceShared
	makeVariant
	modifyQuery
	open
	systemcomposer.allocation.open
	open
	systemcomposer.openDictionary
	systemcomposer.openModel
	openViews
	Property
	PropertyValue
	refresh
	removeComponent
	removeElement
	removeElement
	removeInterface
	removeProfile
	removeProperty
	removeQuery
	removeReference
	removeStereotype
	removeStereotype
	renameProfile
	resetParameterToDefault
	resetToDefault
	runQuery
	save
	save
	save
	save
	saveAsModel
	saveToDictionary
	setActiveChoice
	setAsynchronous
	setComplexity
	setCondition
	setDataType
	setDefaultComponentStereotype
	setDefaultConnectorStereotype
	setDefaultElementStereotype
	setDefaultPortStereotype
	setDefaultStereotype
	setDescription
	setDimensions
	setFunctionPrototype
	setInterface
	setMaximum
	setMinimum
	setName
	setName
	setParameterValue
	setProperty
	setType
	setUnit
	setUnits
	setValue
	synchronizeChanges
	unlinkDictionary
	update
	systemcomposer.updateLinksToReferenceRequirements

	Methods
	systemcomposer.rptgen.finder.AllocationListFinder.find
	systemcomposer.rptgen.finder.AllocationListFinder.hasNext
	systemcomposer.rptgen.finder.AllocationListFinder.next
	systemcomposer.rptgen.finder.AllocationListResult.getReporter
	systemcomposer.rptgen.finder.AllocationSetFinder.find
	systemcomposer.rptgen.finder.AllocationSetFinder.hasNext
	systemcomposer.rptgen.finder.AllocationSetFinder.next
	systemcomposer.rptgen.finder.AllocationSetResult.getReporter
	systemcomposer.rptgen.finder.ComponentFinder.find
	systemcomposer.rptgen.finder.ComponentFinder.hasNext
	systemcomposer.rptgen.finder.ComponentFinder.next
	systemcomposer.rptgen.finder.ComponentResult.getReporter
	systemcomposer.rptgen.finder.ConnectorFinder.find
	systemcomposer.rptgen.finder.ConnectorFinder.hasNext
	systemcomposer.rptgen.finder.ConnectorFinder.next
	systemcomposer.rptgen.finder.ConnectorResult.getReporter
	systemcomposer.rptgen.finder.DictionaryFinder.find
	systemcomposer.rptgen.finder.DictionaryFinder.hasNext
	systemcomposer.rptgen.finder.DictionaryFinder.next
	systemcomposer.rptgen.finder.FunctionFinder.find
	systemcomposer.rptgen.finder.FunctionFinder.hasNext
	systemcomposer.rptgen.finder.FunctionFinder.next
	systemcomposer.rptgen.finder.FunctionResult.getReporter
	systemcomposer.rptgen.finder.InterfaceFinder.find
	systemcomposer.rptgen.finder.InterfaceFinder.hasNext
	systemcomposer.rptgen.finder.InterfaceFinder.next
	systemcomposer.rptgen.finder.InterfaceResult.getReporter
	systemcomposer.rptgen.finder.ProfileFinder.find
	systemcomposer.rptgen.finder.ProfileFinder.hasNext
	systemcomposer.rptgen.finder.ProfileFinder.next
	systemcomposer.rptgen.finder.ProfileResult.getReporter
	systemcomposer.rptgen.finder.RequirementLinkFinder.find
	systemcomposer.rptgen.finder.RequirementLinkFinder.hasNext
	systemcomposer.rptgen.finder.RequirementLinkFinder.next
	systemcomposer.rptgen.finder.RequirementLinkResult.getReporter
	systemcomposer.rptgen.finder.RequirementSetFinder.find
	systemcomposer.rptgen.finder.RequirementSetFinder.hasNext
	systemcomposer.rptgen.finder.RequirementSetFinder.next
	systemcomposer.rptgen.finder.RequirementSetResult.getReporter
	systemcomposer.rptgen.finder.StereotypeFinder.find
	systemcomposer.rptgen.finder.StereotypeFinder.hasNext
	systemcomposer.rptgen.finder.StereotypeFinder.next
	systemcomposer.rptgen.finder.StereotypeResult.getReporter
	systemcomposer.rptgen.finder.ViewFinder.find
	systemcomposer.rptgen.finder.ViewFinder.hasNext
	systemcomposer.rptgen.finder.ViewFinder.next
	systemcomposer.rptgen.finder.ViewResult.getReporter
	systemcomposer.rptgen.report.AllocationList.createTemplate
	systemcomposer.rptgen.report.AllocationList.customizeReporter
	systemcomposer.rptgen.report.AllocationList.getClassFolder
	systemcomposer.rptgen.report.AllocationSet.createTemplate
	systemcomposer.rptgen.report.AllocationSet.customizeReporter
	systemcomposer.rptgen.report.AllocationSet.getClassFolder
	systemcomposer.rptgen.report.Component.createTemplate
	systemcomposer.rptgen.report.Component.customizeReporter
	systemcomposer.rptgen.report.Component.getClassFolder
	systemcomposer.rptgen.report.Connector.createTemplate
	systemcomposer.rptgen.report.Connector.customizeReporter
	systemcomposer.rptgen.report.Connector.getClassFolder
	systemcomposer.rptgen.report.DependencyGraph.createTemplate
	systemcomposer.rptgen.report.DependencyGraph.customizeReporter
	systemcomposer.rptgen.report.DependencyGraph.getClassFolder
	systemcomposer.rptgen.report.Function.createTemplate
	systemcomposer.rptgen.report.Function.customizeReporter
	systemcomposer.rptgen.report.Function.getClassFolder
	systemcomposer.rptgen.report.Interface.createTemplate
	systemcomposer.rptgen.report.Interface.customizeReporter
	systemcomposer.rptgen.report.Interface.getClassFolder
	systemcomposer.rptgen.report.Profile.createTemplate
	systemcomposer.rptgen.report.Profile.customizeReporter
	systemcomposer.rptgen.report.Profile.getClassFolder
	systemcomposer.rptgen.report.RequirementLink.createTemplate
	systemcomposer.rptgen.report.RequirementLink.customizeReporter
	systemcomposer.rptgen.report.RequirementLink.getClassFolder
	systemcomposer.rptgen.report.RequirementSet.createTemplate
	systemcomposer.rptgen.report.RequirementSet.customizeReporter
	systemcomposer.rptgen.report.RequirementSet.getClassFolder
	systemcomposer.rptgen.report.Stereotype.createTemplate
	systemcomposer.rptgen.report.Stereotype.customizeReporter
	systemcomposer.rptgen.report.Stereotype.getClassFolder
	systemcomposer.rptgen.report.View.createTemplate
	systemcomposer.rptgen.report.View.customizeReporter
	systemcomposer.rptgen.report.View.getClassFolder
	systemcomposer.rptgen.report.SequenceDiagram.createTemplate
	systemcomposer.rptgen.report.SequenceDiagram.customizeReporter
	systemcomposer.rptgen.report.SequenceDiagram.getClassFolder

	Tools and Apps
	Allocation Editor
	Analysis Viewer
	Architecture Views Gallery
	Comparison Tool
	Functions Editor
	Instantiate Architecture Model
	Interface Editor
	Manage Profiles
	Parameter Editor
	Profile Editor
	Sequence Viewer

